Display options
Share it on

AMB Express. 2015 Dec;5(1):112. doi: 10.1186/s13568-015-0112-9. Epub 2015 Jun 04.

Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding.

AMB Express

Anika Riedel, Thomas Heine, Adrie H Westphal, Catleen Conrad, Philipp Rathsack, Willem J H van Berkel, Dirk Tischler

Affiliations

  1. Interdisciplinary Ecological Center, Freiberg Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany, [email protected].

PMID: 26054733 PMCID: PMC4460183 DOI: 10.1186/s13568-015-0112-9

Abstract

Styrene monooxygenases (SMOs) are flavoenzymes catalyzing the epoxidation of styrene into styrene oxide. SMOs are composed of a monooxygenase (StyA) and a reductase (StyB). The latter delivers reduced FAD to StyA on the expense of NADH. We identified Rhodococcus opacus 1CP as the first microorganism to possess three different StyA isoforms occurring in two systems StyA1/StyA2B and StyA/StyB, respectively. The hydrodynamic properties of StyA isozymes were found to be modulated by the binding of the (reduced) FAD cofactor. StyA1 and SyA2B mainly occur as dimers in their active forms while StyA is a monomer. StyA1 showed the highest epoxidation activity and excellent enantioselectivity in aromatic sulfoxidation. The hydrodynamic and biocatalytic properties of SMOs from strain 1CP are of relevance for investigation of possible industrial applications.

References

  1. J Biol Chem. 2013 Sep 6;288(36):26235-45 - PubMed
  2. Biochemistry. 2013 Sep 3;52(35):6063-75 - PubMed
  3. Biochemistry. 2011 Feb 1;50(4):523-32 - PubMed
  4. J Biol Chem. 2004 Mar 26;279(13):12860-7 - PubMed
  5. Appl Environ Microbiol. 2007 Sep;73(18):5832-9 - PubMed
  6. Appl Environ Microbiol. 1990 May;56(5):1347-51 - PubMed
  7. Gene. 2003 Nov 13;319:71-83 - PubMed
  8. Appl Biochem Biotechnol. 2012 Jul;167(5):931-44 - PubMed
  9. Appl Environ Microbiol. 1997 Jun;63(6):2232-9 - PubMed
  10. Appl Environ Microbiol. 1999 Jun;65(6):2794-7 - PubMed
  11. Appl Environ Microbiol. 1996 Jan;62(1):121-7 - PubMed
  12. J Biosci Bioeng. 2012 Jan;113(1):12-9 - PubMed
  13. J Bacteriol. 1998 Mar;180(5):1063-71 - PubMed
  14. J Chromatogr A. 2002 Feb 8;946(1-2):197-208 - PubMed
  15. J Biotechnol. 2006 Aug 5;124(4):670-89 - PubMed
  16. J Bacteriol. 2005 Jun;187(12):4050-63 - PubMed
  17. Biotechnol Bioeng. 2000 Jul 5;69(1):91-100 - PubMed
  18. FEMS Microbiol Lett. 2014 Dec;361(1):68-75 - PubMed
  19. Arch Biochem Biophys. 2005 Oct 1;442(1):102-16 - PubMed
  20. J Am Chem Soc. 2003 Jul 9;125(27):8209-17 - PubMed
  21. Arch Biochem Biophys. 2014 Feb 15;544:2-17 - PubMed
  22. J Microbiol Biotechnol. 2009 Apr;19(4):362-7 - PubMed
  23. J Bacteriol. 2004 Aug;186(16):5292-302 - PubMed
  24. Appl Microbiol Biotechnol. 2013 Jun;97(11):4849-58 - PubMed
  25. J Bacteriol. 2009 Aug;191(15):4996-5009 - PubMed
  26. J Mol Biol. 1988 Feb 20;199(4):637-48 - PubMed
  27. J Bacteriol. 2010 Oct;192(19):5220-7 - PubMed
  28. Arch Microbiol. 2005 Feb;183(2):80-94 - PubMed
  29. Appl Microbiol Biotechnol. 2012 Oct;96(2):407-18 - PubMed
  30. Arch Microbiol. 2014 Dec;196(12):829-45 - PubMed
  31. Appl Environ Microbiol. 1995 Feb;61(2):544-8 - PubMed
  32. Appl Environ Microbiol. 1998 Jun;64(6):2032-43 - PubMed
  33. Microbiology. 2014 Nov;160(Pt 11):2481-91 - PubMed
  34. Biotechnol Bioeng. 2006 Oct 20;95(3):501-12 - PubMed
  35. Biochemistry. 2010 Mar 2;49(8):1678-88 - PubMed

Publication Types