Display options
Share it on

Transl Oncol. 2015 Jun;8(3):154-62. doi: 10.1016/j.tranon.2015.03.005.

Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response.

Translational oncology

Ahmed Ashraf, Bilwaj Gaonkar, Carolyn Mies, Angela DeMichele, Mark Rosen, Christos Davatzikos, Despina Kontos, Bourke, Ryan

Affiliations

  1. Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. Electronic address: [email protected].
  2. Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
  3. Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
  4. Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

PMID: 26055172 PMCID: PMC4487265 DOI: 10.1016/j.tranon.2015.03.005

Abstract

The ability to predict response to neoadjuvant chemotherapy for women diagnosed with breast cancer, either before or early on in treatment, is critical to judicious patient selection and tailoring the treatment regimen. In this paper, we investigate the role of contrast agent kinetic heterogeneity features derived from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting treatment response. We propose a set of kinetic statistic descriptors and present preliminary results showing the discriminatory capacity of the proposed descriptors for predicting complete and non-complete responders as assessed from pre-treatment imaging exams. The study population consisted of 15 participants: 8 complete responders and 7 non-complete responders. Using the proposed kinetic features, we trained a leave-one-out logistic regression classifier that performs with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 under the ROC. We compare the predictive value of our features against commonly used MRI features including kinetics of the characteristic kinetic curve (CKC), maximum peak enhancement (MPE), hotspot signal enhancement ratio (SER), and longest tumor diameter that give lower AUCs of 0.71, 0.66, 0.64, and 0.54, respectively. Our proposed kinetic statistics thus outperform the conventional kinetic descriptors as well as the classifier using a combination of all the conventional descriptors (i.e., CKC, MPE, SER, and longest diameter), which gives an AUC of 0.74. These findings suggest that heterogeneity-based DCE-MRI kinetic statistics could serve as potential imaging biomarkers for tumor characterization and could be used to improve candidate patient selection even before the start of the neoadjuvant treatment.

Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

References

  1. Breast Cancer Res Treat. 2007 May;103(1):1-10 - PubMed
  2. J Natl Cancer Inst. 2000 Feb 2;92 (3):205-16 - PubMed
  3. Biochim Biophys Acta. 2010 Jan;1805(1):105-17 - PubMed
  4. Lancet Oncol. 2011 Jan;12(1):21-9 - PubMed
  5. Breast Cancer Res Treat. 2005 Jan;89(2):179-85 - PubMed
  6. J Clin Oncol. 2011 Feb 20;29(6):660-6 - PubMed
  7. J Clin Oncol. 1998 Jan;16(1):93-100 - PubMed
  8. Magn Reson Imaging Clin N Am. 2006 Aug;14(3):383-9, vii - PubMed
  9. Radiology. 2012 Apr;263(1):53-63 - PubMed
  10. J Magn Reson Imaging. 1999 Sep;10(3):223-32 - PubMed
  11. J Natl Cancer Inst Monogr. 2010;2010(41):162-77 - PubMed
  12. J Clin Oncol. 2002 Mar 15;20(6):1456-66 - PubMed
  13. Br J Radiol. 1997 May;70(833):452-8 - PubMed
  14. Radiology. 2012 Jun;263(3):663-72 - PubMed
  15. Med Phys. 2009 Jul;36(7):3192-204 - PubMed
  16. J Oncol. 2010;2010:null - PubMed
  17. AJR Am J Roentgenol. 2008 Nov;191(5):1331-8 - PubMed
  18. Breast Cancer Res Treat. 2012 Apr;132(3):1049-62 - PubMed
  19. Magn Reson Med. 2014 Apr;71(4):1592-602 - PubMed
  20. Ann Oncol. 1998 Nov;9(11):1179-84 - PubMed
  21. J Digit Imaging. 2011 Jun;24(3):446-63 - PubMed
  22. AJNR Am J Neuroradiol. 2006 Feb;27(2):409-17 - PubMed
  23. Magn Reson Imaging Clin N Am. 2010 May;18(2):249-58, viii-ix - PubMed
  24. Magn Reson Med Sci. 2004;3(4):189-97 - PubMed
  25. Radiology. 2010 Oct;257(1):56-63 - PubMed
  26. Radiol Clin North Am. 2010 Sep;48(5):1013-42 - PubMed
  27. J Clin Oncol. 2003 Nov 15;21(22):4165-74 - PubMed
  28. Clin Transl Oncol. 2011 Nov;13(11):767-73 - PubMed
  29. Med Phys. 2004 May;31(5):1076-82 - PubMed
  30. Acta Radiol. 2015 Nov;56(11):1300-7 - PubMed
  31. Breast. 2012 Oct;21(5):669-77 - PubMed
  32. Radiology. 2011 Dec;261(3):735-43 - PubMed
  33. Med Phys. 2010 Aug;37(8):3940-56 - PubMed
  34. Radiology. 2014 Aug;272(2):374-84 - PubMed
  35. Invest Radiol. 2015 Apr;50(4):195-204 - PubMed
  36. Ann Surg Oncol. 2001 Jul;8(6):549-59 - PubMed
  37. Med Phys. 2006 Aug;33(8):2878-87 - PubMed
  38. Clin Cancer Res. 2008 Oct 15;14(20):6580-9 - PubMed
  39. J Magn Reson Imaging. 2010 Jul;32(1):2-16 - PubMed
  40. J Magn Reson Imaging. 2011 Jan;33(1):96-101 - PubMed
  41. NMR Biomed. 2011 Jul;24(6):712-20 - PubMed
  42. J Clin Oncol. 2008 Feb 10;26(5):778-85 - PubMed
  43. Eur Radiol. 2003 Nov;13(11):2425-35 - PubMed
  44. Radiology. 2010 Mar;254(3):680-90 - PubMed
  45. J Magn Reson Imaging. 2010 Nov;32(5):1124-31 - PubMed

Publication Types

Grant support