Display options
Share it on

Nat Commun. 2015 Jun 25;6:7430. doi: 10.1038/ncomms8430.

Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics.

Nature communications

Junjie Qi, Yann-Wen Lan, Adam Z Stieg, Jyun-Hong Chen, Yuan-Liang Zhong, Lain-Jong Li, Chii-Dong Chen, Yue Zhang, Kang L Wang

Affiliations

  1. School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China.
  2. 1] Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA [2] Institute of Physics, Academia Sinica, Taipei 115, Taiwan.
  3. 1] California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California 90095, USA [2] WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan.
  4. Department of Physics and Center for Nanotechnology, Chung Yuan Cristian University, Chungli 32023, Taiwan.
  5. Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Huwal 23955-6900, Kingdom of Saudi Arabia.
  6. Institute of Physics, Academia Sinica, Taipei 115, Taiwan.
  7. Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.

PMID: 26109177 PMCID: PMC4491182 DOI: 10.1038/ncomms8430

Abstract

High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photo-piezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monolayer MoS2 devices under isotropic mechanical deformation. The experimental observation indicates that the conductivity of MoS2 devices can be actively modulated by the piezoelectric charge polarization-induced built-in electric field under strain variation. These polarization charges alter the Schottky barrier height on both contacts, resulting in a barrier height increase with increasing compressive strain and decrease with increasing tensile strain. The underlying mechanism of strain-induced in-plane charge polarization is proposed and discussed using energy band diagrams. In addition, a new type of MoS2 strain/force sensor built using a monolayer MoS2 triangle is also demonstrated. Our results provide evidence for strain-gating monolayer MoS2 piezotronics, a promising avenue for achieving augmented functionalities in next-generation electronic and mechanical-electronic nanodevices.

References

  1. Nano Lett. 2013 Jun 12;13(6):2931-6 - PubMed
  2. Nano Lett. 2011 Sep 14;11(9):4012-7 - PubMed
  3. Nat Mater. 2013 Aug;12(8):754-9 - PubMed
  4. Sci Rep. 2013 Oct 16;3:2961 - PubMed
  5. Nature. 2014 Oct 23;514(7523):470-4 - PubMed
  6. Nat Nanotechnol. 2009 May;4(5):315-9 - PubMed
  7. ACS Nano. 2010 May 25;4(5):2695-700 - PubMed
  8. Nat Mater. 2013 Sep;12(9):815-20 - PubMed
  9. Nano Lett. 2013 Aug 14;13(8):3626-30 - PubMed
  10. Adv Mater. 2013 Jun 25;25(24):3371-9 - PubMed
  11. Nano Lett. 2011 Mar 9;11(3):1241-6 - PubMed
  12. Phys Chem Chem Phys. 2012 Oct 5;14(37):13035-40 - PubMed
  13. Science. 2013 Jun 14;340(6138):1311-4 - PubMed
  14. Chem Soc Rev. 2013 Mar 7;42(5):1934-46 - PubMed
  15. Nat Commun. 2013;4:2642 - PubMed
  16. Nano Lett. 2010 Apr 14;10(4):1271-5 - PubMed
  17. Nat Mater. 2013 Mar;12(3):207-11 - PubMed
  18. Nat Mater. 2013 Jun;12(6):554-61 - PubMed
  19. ACS Nano. 2013 Aug 27;7(8):7126-31 - PubMed
  20. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  21. Nat Nanotechnol. 2012 Nov;7(11):699-712 - PubMed
  22. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  23. Nano Lett. 2013 Jun 12;13(6):2831-6 - PubMed
  24. Phys Rev Lett. 2003 Apr 18;90(15):157601 - PubMed
  25. Small. 2012 Jan 9;8(1):63-7 - PubMed
  26. ACS Nano. 2012 Jun 26;6(6):5449-56 - PubMed
  27. ACS Nano. 2011 Dec 27;5(12):9703-9 - PubMed
  28. Adv Mater. 2012 Sep 4;24(34):4656-75 - PubMed
  29. Nanoscale. 2014 Nov 21;6(22):13314-27 - PubMed
  30. ACS Nano. 2011 Oct 25;5(10):7707-12 - PubMed
  31. Nat Commun. 2014 Jun 27;5:4284 - PubMed
  32. Nano Lett. 2014 May 14;14(5):2381-6 - PubMed
  33. Nat Nanotechnol. 2007 Jan;2(1):53-8 - PubMed
  34. Nanoscale. 2013 Mar 7;5(5):1716-26 - PubMed
  35. Adv Mater. 2012 Feb 7;24(6):772-5 - PubMed
  36. Nano Lett. 2013;13(11):5361-6 - PubMed

Publication Types