Display options
Share it on

Interdiscip Toxicol. 2014 Dec;7(4):195-200. doi: 10.2478/intox-2014-0028. Epub 2015 Mar 04.

Arbutin and decrease of potentially toxic substances generated in human blood neutrophils.

Interdisciplinary toxicology

Jana Pečivová, Radomír Nosál', Klára Sviteková, Tatiana Mačičková

Affiliations

  1. Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia.
  2. National Transfusion Service, SK-83101 Bratislava, Slovakia.

PMID: 26109900 PMCID: PMC4436208 DOI: 10.2478/intox-2014-0028

Abstract

Neutrophils, highly motile phagocytic cells, constitute the first line of host defense and simultaneously they are considered to be central cells of chronic inflammation. In combination with standard therapeutic procedures, natural substances are gaining interest as an option for enhancing the effectiveness of treatment of inflammatory diseases. We investigated the effect of arbutin and carvedilol and of their combination on 4β-phorbol-12β-myristate-13α-acetate- stimulated functions of human isolated neutrophils. Cells were preincubated with the drugs tested and subsequently stimulated. Superoxide (with or without blood platelets, in the rate close to physiological conditions [1:50]) and HOCl generation, elastase and myeloperoxidase release were determined spectrophotometrically and phospholipase D activation spectrofluorometrically. The combined effect of arbutin and carvedilol was found to be more effective than the effect of each compound alone. Our study provided evidence supporting the potential beneficial effect of arbutin alone or in combination with carvedilol in diminishing tissue damage by decreasing phospholipase D, myeloperoxidase and elastase activity and by attenuating the generation of superoxide and the subsequently derived reactive oxygen species. The presented data indicate the ability of arbutin to suppress the onset and progression of inflammation.

Keywords: arbutin; carvedilol; degranulation; neutrophil-blood platelet interactions; reactive oxygen species

References

  1. J Biol Chem. 1979 May 25;254(10):4027-32 - PubMed
  2. Circ Res. 2007 Jan 5;100(1):27-40 - PubMed
  3. Cell Signal. 1998 Jun;10(6):387-97 - PubMed
  4. Neuro Endocrinol Lett. 2006 Dec;27 Suppl 2:138-40 - PubMed
  5. J Clin Invest. 2002 Mar;109(5):661-70 - PubMed
  6. Biochim Biophys Acta. 1996 Jul 12;1302(1):69-78 - PubMed
  7. Yakugaku Zasshi. 1991 Apr-May;111(4-5):253-8 - PubMed
  8. J Cell Biochem. 2009 Dec 1;108(5):1039-46 - PubMed
  9. Pharmacol Ther. 2006 Jul;111(1):16-26 - PubMed
  10. Free Radic Res. 2010 Apr;44(4):473-8 - PubMed
  11. Biochim Biophys Acta. 2002 Dec 30;1585(2-3):77-86 - PubMed
  12. Platelets. 2002 Dec;13(8):479-85 - PubMed
  13. Pharmacology. 2007;79(2):86-92 - PubMed
  14. Physiol Res. 2004;53(1):97-102 - PubMed
  15. Eur J Pharmacol. 1992 Apr 22;214(2-3):277-80 - PubMed
  16. Autoimmun Rev. 2010 Jun;9(8):531-5 - PubMed
  17. J Clin Invest. 1983 Nov;72(5):1672-7 - PubMed
  18. Carcinogenesis. 2000 Oct;21(10):1899-907 - PubMed
  19. Scand J Clin Lab Invest. 2005;65(1):55-64 - PubMed
  20. Thromb Res. 2000 Jun 1;98(5):411-21 - PubMed
  21. Biochem Pharmacol. 2000 Apr 15;59(8):1007-13 - PubMed
  22. J Biol Chem. 2000 Dec 1;275(48):37524-32 - PubMed
  23. Am J Cardiol. 2004 May 6;93(9A):3B-6B - PubMed
  24. Prog Lipid Res. 2011 Jan;50(1):35-51 - PubMed
  25. J Clin Invest. 1982 Sep;70(3):598-607 - PubMed
  26. Nat Rev Immunol. 2008 May;8(5):349-61 - PubMed
  27. Methods Find Exp Clin Pharmacol. 2004 Jul-Aug;26(6):395-8 - PubMed
  28. J Physiol Pharmacol. 2009 Mar;60(1):143-50 - PubMed
  29. Lab Invest. 1988 Jan;58(1):37-47 - PubMed
  30. Br J Pharmacol. 2009 Oct;158(4):1048-58 - PubMed
  31. FEBS Lett. 2001 Jan 5;487(3):318-22 - PubMed
  32. Platelets. 2007 Dec;18(8):583-90 - PubMed
  33. Phytother Res. 2013 Jul;27(7):1018-22 - PubMed
  34. Inflamm Res. 2012 Aug;61(8):817-25 - PubMed

Publication Types