Display options
Share it on

Acta Naturae. 2015 Apr-Jun;7(2):108-14.

The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

Acta naturae

E V Dubrovin, G V Presnova, M Yu Rubtsova, A M Egorov, V G Grigorenko, I V Yaminsky

Affiliations

  1. Department of Physics, Lomonosov Moscow State University, Leninskie gory, 1/2, 119991, Moscow, Russia.
  2. Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991, Moscow, Russia.
  3. Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991, Moscow, Russia ; Russian Medical Academy of Postgraduate Education, Barrikadnaya, 2/1, 125993, Moscow, Russia.
  4. Department of Physics, Lomonosov Moscow State University, Leninskie gory, 1/2, 119991, Moscow, Russia ; Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991, Moscow, Russia.

PMID: 26085952 PMCID: PMC4463420

Abstract

Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

Keywords: CTXM type β-lactamases; DNA; atomic force microscopy; gold nanoparticles; hybridization; oligonucleotide microarrays

References

  1. Anal Chem. 2007 Aug 1;79(15):6037-41 - PubMed
  2. Nucleic Acids Res. 2001 Dec 1;29(23):E117 - PubMed
  3. FEBS Lett. 2006 Oct 16;580(24):5671-5 - PubMed
  4. Open Microbiol J. 2012;6:22-8 - PubMed
  5. Science. 1995 Oct 20;270(5235):467-70 - PubMed
  6. Biochemistry (Mosc). 2010 Dec;75(13):1628-49 - PubMed
  7. Mol Carcinog. 1999 Mar;24(3):153-9 - PubMed
  8. Anal Chem. 2010 Mar 15;82(6):2395-400 - PubMed
  9. PLoS One. 2012;7(10):e47348 - PubMed
  10. Ann N Y Acad Sci. 2013 Jan;1277:84-90 - PubMed
  11. Opt Lett. 2007 Nov 1;32(21):3092-4 - PubMed
  12. J Clin Microbiol. 2006 Feb;44(2):561-70 - PubMed
  13. Biosens Bioelectron. 2005 Oct 15;21(4):627-36 - PubMed
  14. Essays Biochem. 1994;28:129-46 - PubMed
  15. J Fluoresc. 2005 Mar;15(2):161-70 - PubMed
  16. J Microbiol Biotechnol. 2009 Jul;19(7):635-46 - PubMed
  17. Biosens Bioelectron. 2010 Dec 15;26(4):1252-60 - PubMed
  18. PLoS One. 2008 Feb 06;3(2):e1546 - PubMed
  19. Nucleic Acids Res. 1994 Jun 11;22(11):2121-5 - PubMed
  20. Biomaterials. 2007 May;28(15):2393-402 - PubMed
  21. Crit Rev Oral Biol Med. 2002;13(1):35-50 - PubMed
  22. Chemphyschem. 2008 Apr 21;9(6):867-72 - PubMed
  23. Colloids Surf B Biointerfaces. 2010 Mar 1;76(1):63-9 - PubMed
  24. Science. 1999 May 28;284(5419):1520-3 - PubMed
  25. Chem Rev. 2008 Jan;108(1):109-39 - PubMed
  26. Biomacromolecules. 2007 Jul;8(7):2258-61 - PubMed

Publication Types