Display options
Share it on

Clin Proteomics. 2014 Nov 21;11(1):41. doi: 10.1186/1559-0275-11-41. eCollection 2014.

Plasticity of fibroblasts demonstrated by tissue-specific and function-related proteome profiling.

Clinical proteomics

Astrid Slany, Anastasia Meshcheryakova, Agnes Beer, Hendrik Jan Ankersmit, Verena Paulitschke, Christopher Gerner

Affiliations

  1. Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria.
  2. Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.
  3. Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.
  4. Department of Dermatology, Medical University of Vienna, Vienna, Austria.
  5. Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria ; Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria.

PMID: 26029019 PMCID: PMC4448269 DOI: 10.1186/1559-0275-11-41

Abstract

BACKGROUND: Fibroblasts are mesenchymal stromal cells which occur in all tissue types. While their main function is related to ECM production and physical support, they are also important players in wound healing, and have further been recognized to be able to modulate inflammatory processes and support tumor growth. Fibroblasts can display distinct phenotypes, depending on their tissue origin, as well as on their functional state.

RESULTS: In order to contribute to the proteomic characterization of fibroblasts, we have isolated primary human fibroblasts from human skin, lung and bone marrow and generated proteome profiles of these cells by LC-MS/MS. Comparative proteome profiling revealed characteristic differences therein, which seemed to be related to the cell's tissue origin. Furthermore, the cells were treated in vitro with the pro-inflammatory cytokine IL-1beta. While all fibroblasts induced the secretion of Interleukins IL-6 and IL-8 and the chemokine GRO-alpha, other inflammation-related proteins were up-regulated in an apparently tissue-dependent manner. Investigating fibroblasts from tumorous tissues of skin, lung and bone marrow with respect to such inflammation-related proteins revealed hardly any conformity but rather individual and tumor type-related variations. However, apparent up-regulation of IGF-II, PAI-1 and PLOD2 was observed in melanoma-, lung adenocarcinoma- and multiple myeloma-associated fibroblasts, as well as in hepatocellular carcinoma-associated fibroblasts.

CONCLUSIONS: Inflammation-related proteome alterations of primary human fibroblasts were determined by the analysis of IL-1beta treated cells. Tumor-associated fibroblasts from different tissue types hardly showed signs of acute inflammation but displayed characteristic functional aberrations potentially related to chronic inflammation. The present data suggest that the state of the tumor microenvironment is relevant for tumor progression and targeted treatment of tumor-associated fibroblasts may support anti-cancer strategies.

Keywords: Fibroblasts; Inflammatory activation; Primary human cells; Proteome profiling; Tumor-stroma interactions

References

  1. Curr Cancer Drug Targets. 2011 May;11(4):394-404 - PubMed
  2. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10558-63 - PubMed
  3. World J Gastroenterol. 2008 Mar 21;14(11):1690-8 - PubMed
  4. Development. 2008 Mar;135(6):1049-58 - PubMed
  5. PLoS One. 2013 Apr 22;8(4):e61984 - PubMed
  6. Br J Haematol. 2008 Sep;142(5):827-30 - PubMed
  7. Br J Pharmacol. 2008 Mar;153 Suppl 1:S241-6 - PubMed
  8. Stem Cells Dev. 2011 Jan;20(1):53-66 - PubMed
  9. Res Immunol. 1993 Nov-Dec;144(9):735-9; discussion 754-62 - PubMed
  10. Virchows Arch. 2013 Jul;463(1):57-65 - PubMed
  11. Eur J Biochem. 1998 May 15;254(1):123-8 - PubMed
  12. Cell Immunol. 2009;257(1-2):55-60 - PubMed
  13. Biochem J. 2014 Jan 1;457(1):137-49 - PubMed
  14. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14765-70 - PubMed
  15. Tumour Biol. 2013 Aug;34(4):2041-51 - PubMed
  16. J Biol Chem. 2013 Jan 4;288(1):59-68 - PubMed
  17. PLoS Genet. 2006 Jul;2(7):e119 - PubMed
  18. Proteomics. 2011 Mar;11(5):1000-4 - PubMed
  19. J Immunol. 1997 Jul 1;159(1):487-96 - PubMed
  20. Electrophoresis. 2009 Jun;30(12):2076-89 - PubMed
  21. Proteomics. 2001 Nov;1(11):1359-63 - PubMed
  22. Nat Rev Cancer. 2006 May;6(5):392-401 - PubMed
  23. Mol Cell Proteomics. 2005 Sep;4(9):1265-72 - PubMed
  24. Proteomics. 2008 Jul;8(13):2640-50 - PubMed
  25. Electrophoresis. 2013 Dec;34(24):3315-25 - PubMed
  26. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  27. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12877-82 - PubMed
  28. Int J Mol Med. 2011 Nov;28(5):721-6 - PubMed
  29. J Biol Chem. 2013 May 3;288(18):12699-711 - PubMed
  30. PLoS One. 2012;7(9):e46103 - PubMed
  31. Biochim Biophys Acta. 2011 Oct;1812(10):1327-36 - PubMed
  32. Clin Exp Immunol. 2013 Jan;171(1):30-5 - PubMed
  33. Matrix Biol. 2005 Oct;24(7):459-68 - PubMed
  34. Cell Adh Migr. 2012 Nov-Dec;6(6):488-94 - PubMed
  35. Am J Pathol. 2008 Apr;172(4):951-60 - PubMed
  36. J Biol Chem. 1997 Mar 28;272(13):8172-8 - PubMed
  37. Electrophoresis. 2014 May;35(10):1428-38 - PubMed
  38. Gerontology. 2013;59(3):240-9 - PubMed
  39. Am J Pathol. 2010 Aug;177(2):598-607 - PubMed
  40. Proteomics. 2013 Jan;13(2):379-88 - PubMed
  41. J Proteome Res. 2009 Jun;8(6):2799-811 - PubMed
  42. Int J Cancer. 2008 Nov 15;123(10):2229-38 - PubMed
  43. Fibrogenesis Tissue Repair. 2013 May 10;6(1):10 - PubMed
  44. Nat Med. 2011 Mar;17(3):320-9 - PubMed
  45. Curr Opin Rheumatol. 2004 Nov;16(6):733-8 - PubMed
  46. Biochim Biophys Acta. 2013 Jul;1832(7):1070-8 - PubMed
  47. Ann Hematol. 1992 May;64(5):210-6 - PubMed
  48. J Bone Miner Res. 2012 Jan;27(1):11-25 - PubMed
  49. Mol Cell Biol. 2011 Aug;31(16):3223-40 - PubMed
  50. Liver Int. 2012 Jan;32(1):110-8 - PubMed
  51. Am J Pathol. 2012 Apr;180(4):1340-55 - PubMed
  52. J Invest Dermatol. 2006 Nov;126(11):2387-96 - PubMed
  53. J Immunol. 1991 Jul 15;147(2):520-7 - PubMed
  54. Trends Immunol. 2001 Apr;22(4):199-204 - PubMed
  55. J Clin Invest. 2002 Jun;109(11):1417-27 - PubMed
  56. J Biol Chem. 1994 Feb 25;269(8):6185-92 - PubMed
  57. Electrophoresis. 2009 Apr;30(8):1306-28 - PubMed
  58. Anal Chem. 2003 Sep 1;75(17):4646-58 - PubMed
  59. Lab Invest. 2004 Jan;84(1):91-101 - PubMed
  60. Int J Cancer. 2013 Jul 15;133(2):286-93 - PubMed
  61. Cancer Res. 2003 Aug 15;63(16):5073-83 - PubMed
  62. PLoS One. 2009 Oct 16;4(10):e7475 - PubMed
  63. Exp Cell Res. 2006 Nov 1;312(18):3485-94 - PubMed
  64. Am J Pathol. 2011 Nov;179(5):2431-42 - PubMed
  65. J Proteome Res. 2014 Feb 7;13(2):844-54 - PubMed
  66. Cancer Biol Ther. 2006 Dec;5(12):1640-6 - PubMed
  67. Endocr Relat Cancer. 2012 Oct 30;19(6):R187-204 - PubMed
  68. Anticancer Agents Med Chem. 2012 Sep;12(7):744-52 - PubMed
  69. Oncogene. 2004 Aug 19;23(37):6209-17 - PubMed
  70. Pathobiology. 1991;59(4):284-8 - PubMed
  71. J Biol Chem. 2011 Apr 29;286(17):14861-9 - PubMed
  72. Clin Cancer Res. 2013 Jun 1;19(11):2810-6 - PubMed

Publication Types