Display options
Share it on

Front Microbiol. 2015 May 12;6:444. doi: 10.3389/fmicb.2015.00444. eCollection 2015.

Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated vs. non-stimulated Glossina palpalis gambiensis flies.

Frontiers in microbiology

Anne Geiger, Illiassou Hamidou Soumana, Bernadette Tchicaya, Valérie Rofidal, Mathilde Decourcelle, Véronique Santoni, Sonia Hem

Affiliations

  1. UMR 177, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France.
  2. Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France.

PMID: 26029185 PMCID: PMC4428205 DOI: 10.3389/fmicb.2015.00444

Abstract

The unicellular pathogenic protozoan Trypanosoma brucei gambiense is responsible for the chronic form of sleeping sickness. This vector-borne disease is transmitted to humans by the tsetse fly of the group Glossina palpalis, including the subspecies G. p. gambiensis, in which the parasite completes its developmental cycle. Sleeping sickness control strategies can therefore target either the human host or the fly vector. Indeed, suppression of one step in the parasite developmental cycle could abolish parasite transmission to humans, with consequences on the spreading of the disease. In order to develop this type of approach, we have identified, at the proteome level, events resulting from the tripartite interaction between the tsetse fly G. p. gambiensis, its microbiome, and the trypanosome. Proteomes were analyzed from four biological replicates of midguts from flies sampled 3 days post-feeding on either a trypanosome-infected (stimulated flies) or a non-infected (non-stimulated flies) bloodmeal. Over 500 proteins were identified in the midguts of flies from both feeding groups, 13 of which were shown to be differentially expressed in trypanosome-stimulated vs. non-stimulated flies. Functional annotation revealed that several of these proteins have important functions that could be involved in modulating the fly infection process by trypanosomes (and thus fly vector competence), including anti-oxidant and anti-apoptotic, cellular detoxifying, trypanosome agglutination, and immune stimulating or depressive effects. The results show a strong potential for diminishing or even disrupting fly vector competence, and their application holds great promise for improving the control of sleeping sickness.

Keywords: label-free quantification; sleeping sickness; tripartite interactions; trypanosome-associated global changes; tsetse-bacteria-trypanosomes

References

  1. Insect Biochem Mol Biol. 2003 Nov;33(11):1155-64 - PubMed
  2. PLoS One. 2011;6(11):e26984 - PubMed
  3. Trop Med Parasitol. 1987 Sep;38(3):167-70 - PubMed
  4. Infect Genet Evol. 2009 Dec;9(6):1364-70 - PubMed
  5. Mol Cell Biochem. 2004 Nov;266(1-2):191-8 - PubMed
  6. J Cell Sci. 1999 Sep;112 ( Pt 17):2799-809 - PubMed
  7. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  8. Antonie Van Leeuwenhoek. 2011 Mar;99(3):711-20 - PubMed
  9. Microb Ecol. 2011 Oct;62(3):632-43 - PubMed
  10. Insect Biochem Mol Biol. 2005 May;35(5):425-33 - PubMed
  11. Virology. 1961 Jan;13:68-77 - PubMed
  12. Annu Rev Biochem. 2004;73:1019-49 - PubMed
  13. Annu Rev Entomol. 1997;42:525-50 - PubMed
  14. J Invertebr Pathol. 2013 Mar;112 Suppl:S89-93 - PubMed
  15. Adv Parasitol. 2003;53:1-83 - PubMed
  16. J Invertebr Pathol. 2013 Mar;112 Suppl:S2-10 - PubMed
  17. Parasitology. 1999 May;118 ( Pt 5):469-78 - PubMed
  18. J Med Entomol. 2007 Jul;44(4):660-5 - PubMed
  19. PLoS One. 2010 Oct 05;5(10):null - PubMed
  20. Infect Genet Evol. 2014 Jun;24:41-56 - PubMed
  21. Insect Biochem Mol Biol. 2006 Apr;36(4):344-52 - PubMed
  22. J Biol Chem. 2002 Dec 20;277(51):50190-7 - PubMed
  23. Kinetoplastid Biol Dis. 2003 Apr 10;2(1):1 - PubMed
  24. Front Microbiol. 2014 Nov 17;5:620 - PubMed
  25. Exp Parasitol. 1994 Sep;79(2):202-5 - PubMed
  26. Front Cell Infect Microbiol. 2013 Jul 24;3:34 - PubMed
  27. Infect Genet Evol. 2010 Jan;10(1):115-21 - PubMed
  28. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5700-5 - PubMed
  29. Biol Cell. 1988;64(2):109-19 - PubMed
  30. Ann Trop Med Parasitol. 2011 Apr;105(3):261-5 - PubMed
  31. Parasitology. 2007 Jun;134(Pt 6):827-31 - PubMed
  32. PLoS Negl Trop Dis. 2012;6(6):e1708 - PubMed
  33. Int J Biochem Cell Biol. 2007;39(6):1190-203 - PubMed
  34. Parasitology. 1998 Jul;117 ( Pt 1):63-73 - PubMed
  35. Parasitology. 2009 Dec;136(14):1943-9 - PubMed
  36. Mol Microbiol. 2006 Jun;60(5):1194-204 - PubMed
  37. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12648-53 - PubMed
  38. Mol Cell Proteomics. 2012 Aug;11(8):527-39 - PubMed
  39. PLoS Pathog. 2013;9(4):e1003318 - PubMed
  40. Insect Biochem Mol Biol. 2005 May;35(5):413-23 - PubMed
  41. PLoS Pathog. 2010 Mar 05;6(3):e1000793 - PubMed
  42. Nitric Oxide. 2000 Aug;4(4):423-30 - PubMed
  43. Trans R Soc Trop Med Hyg. 1989 Sep-Oct;83(5):636-9 - PubMed
  44. PLoS Negl Trop Dis. 2014 Apr 24;8(4):e2691 - PubMed
  45. Mol Biol Evol. 2007 Jan;24(1):102-9 - PubMed
  46. Parasitol Res. 2011 May;108(5):1309-13 - PubMed
  47. Acta Trop. 1970;27(4):378-83 - PubMed
  48. BMC Microbiol. 2010 Jan 26;10:20 - PubMed
  49. Mol Cell Proteomics. 2010 Jan;9(1):131-44 - PubMed
  50. Trends Parasitol. 2013 Aug;29(8):394-406 - PubMed
  51. Acta Trop. 1986 Dec;43(4):407-8 - PubMed
  52. Trends Biochem Sci. 2005 Mar;30(3):142-50 - PubMed
  53. Appl Biochem Biotechnol. 2014 Jan;172(1):487-96 - PubMed
  54. Acta Trop. 2006 Nov;100(1-2):151-5 - PubMed
  55. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12133-8 - PubMed
  56. Prev Vet Med. 2013 Jul 1;110(3-4):290-303 - PubMed
  57. Cell Mol Life Sci. 2001 Dec;58(14):1969-87 - PubMed
  58. Parasitol Today. 1999 Oct;15(10):399-403 - PubMed
  59. J Biomed Biotechnol. 2010;2010:212817 - PubMed
  60. EMBO J. 2001 Jul 16;20(14):3657-66 - PubMed
  61. Genome Biol. 2003;4(10):R63 - PubMed
  62. Biochimie. 2014 Apr;99:110-8 - PubMed

Publication Types