Display options
Share it on

Front Microbiol. 2015 May 12;6:448. doi: 10.3389/fmicb.2015.00448. eCollection 2015.

Segregation of chromosome arms in growing and non-growing Escherichia coli cells.

Frontiers in microbiology

Conrad L Woldringh, Flemming G Hansen, Norbert O E Vischer, Tove Atlung

Affiliations

  1. Bacterial Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands.
  2. Department of Systems Biology, Technical University of Denmark Lyngby, Denmark.
  3. Department of Science, Systems and Models, Roskilde University Roskilde, Denmark.

PMID: 26029188 PMCID: PMC4428220 DOI: 10.3389/fmicb.2015.00448

Abstract

In slow-growing Escherichia coli cells the chromosome is organized with its left (L) and right (R) arms lying separated in opposite halves of the nucleoid and with the origin (O) in-between, giving the pattern L-O-R. During replication one of the arms has to pass the other to obtain the same organization in the daughter cells: L-O-R L-O-R. To determine the movement of arms during segregation six strains were constructed carrying three colored loci: the left and right arms were labeled with red and cyan fluorescent-proteins, respectively, on loci symmetrically positioned at different distances from the central origin, which was labeled with green-fluorescent protein. In non-replicating cells with the predominant spot pattern L-O-R, initiation of replication first resulted in a L-O-O-R pattern, soon changing to O-L-R-O. After replication of the arms the predominant spot patterns were, L-O-R L-O-R, O-R-L R-O-L or O-L-R L-O-R indicating that one or both arms passed an origin and the other arm. To study the driving force for these movements cell growth was inhibited with rifampicin allowing run-off DNA synthesis. Similar spot patterns were obtained in growing and non-growing cells, indicating that the movement of arms is not a growth-sustained process, but may result from DNA synthesis itself. The distances between loci on different arms (LR-distances) and between duplicated loci (LL- or RR-distances) as a function of their distance from the origin, indicate that in slow-growing cells DNA is organized according to the so-called sausage model and not according to the doughnut model.

Keywords: DNA segregation; Escherichia coli; chromosome arms (replichores); nucleoid; ordering pattern; rifampicin-treatment; run-off DNA synthesis

References

  1. Nat Rev Microbiol. 2010 Aug;8(8):600-7 - PubMed
  2. J Bacteriol. 2010 Dec;192(23):6143-53 - PubMed
  3. Nucleic Acids Res. 2012 Feb;40(3):972-80 - PubMed
  4. J Biol Chem. 2000 Mar 17;275(11):8103-13 - PubMed
  5. EMBO J. 2012 May 11;31(14):3198-211 - PubMed
  6. J Bacteriol. 2007 Dec;189(23):8660-6 - PubMed
  7. Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a000349 - PubMed
  8. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4991-5 - PubMed
  9. Genes Dev. 2014 Jan 1;28(1):71-84 - PubMed
  10. EMBO J. 2004 Jan 14;23(1):221-33 - PubMed
  11. Genes Dev. 2006 Jul 1;20(13):1727-31 - PubMed
  12. Cell. 2013 May 9;153(4):882-95 - PubMed
  13. Mol Microbiol. 2012 Dec;86(6):1285-90 - PubMed
  14. Mol Microbiol. 2006 Oct;62(2):331-8 - PubMed
  15. Mol Microbiol. 2012 Dec;86(6):1318-33 - PubMed
  16. J Struct Biol. 2006 Nov;156(2):262-72 - PubMed
  17. J Struct Biol. 2001 Oct;136(1):53-66 - PubMed
  18. J Mol Biol. 1972 Feb 28;64(1):47-60 - PubMed
  19. Genes Dev. 2000 Jan 15;14(2):212-23 - PubMed
  20. Mol Microbiol. 1999 Sep;33(5):959-70 - PubMed
  21. Mol Microbiol. 2010 Mar;75(5):1090-7 - PubMed
  22. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2649-56 - PubMed
  23. Biophys Chem. 1998 Jul 13;73(1-2):23-9 - PubMed
  24. Genes Dev. 2001 Aug 15;15(16):2031-41 - PubMed
  25. J Bacteriol. 1956 Apr;71(4):474-9 - PubMed
  26. J Struct Biol. 2006 Nov;156(2):273-83 - PubMed
  27. EMBO J. 1986 Jul;5(7):1711-7 - PubMed
  28. J Struct Biol. 2005 May;150(2):226-32 - PubMed
  29. Genes Dev. 2005 Oct 1;19(19):2367-77 - PubMed
  30. Mol Microbiol. 2006 Jul;61(2):383-93 - PubMed
  31. Genes Dev. 2008 Sep 1;22(17):2426-33 - PubMed
  32. Mol Microbiol. 2002 Jul;45(1):17-29 - PubMed
  33. Microbiology. 2003 Apr;149(Pt 4):1001-10 - PubMed
  34. Cell. 2008 Apr 4;133(1):90-102 - PubMed
  35. J Mol Biol. 1961 Apr;3:144-55 - PubMed

Publication Types