Display options
Share it on

Mol Ther Methods Clin Dev. 2015 Apr 01;2:15008. doi: 10.1038/mtm.2015.8. eCollection 2015.

Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

Molecular therapy. Methods & clinical development

Takahiro Ochiya, Keizo Takenaga, Masataka Asagiri, Kazumi Nakano, Hitoshi Satoh, Toshiki Watanabe, Shinobu Imajoh-Ohmi, Hideya Endo

Affiliations

  1. Division of Molecular and Cellular Medicine, National Cancer Center Research Institute , Tokyo, Japan.
  2. Department of Life Science, Shimane University School of Medicine , Izumo, Japan.
  3. The Institute of Medical Science, The University of Tokyo , Tokyo, Japan.
  4. Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo , Tokyo, Japan.
  5. The Institute of Medical Science, The University of Tokyo , Tokyo, Japan ; Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo , Tokyo, Japan.

PMID: 26029719 PMCID: PMC4445002 DOI: 10.1038/mtm.2015.8

Abstract

The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

References

  1. J Cell Biol. 1994 Mar;124(5):757-68 - PubMed
  2. Nat Cell Biol. 2007 Mar;9(3):299-309 - PubMed
  3. Science. 2014 Jan 17;343(6168):309-13 - PubMed
  4. J Biol Chem. 2012 May 4;287(19):15330-44 - PubMed
  5. Cancer Res. 2006 May 15;66(10 ):5173-80 - PubMed
  6. Am J Pathol. 2010 Feb;176(2):528-35 - PubMed
  7. J Biol Chem. 2001 Jun 22;276(25):22699-708 - PubMed
  8. J Biol Chem. 2005 May 27;280(21):20833-41 - PubMed
  9. Cancer Res. 1999 Sep 15;59(18):4702-8 - PubMed
  10. Oncogene. 1997 Jan 23;14 (3):331-7 - PubMed
  11. Biochim Biophys Acta. 2000 Dec 20;1498(2-3):252-63 - PubMed
  12. J Virol. 1998 Feb;72(2):1115-21 - PubMed
  13. FEBS Lett. 1993 Jun 7;324(1):51-5 - PubMed
  14. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12177-82 - PubMed
  15. Curr Med Chem. 2012;19(7):1021-35 - PubMed
  16. Amino Acids. 2011 Oct;41(4):863-73 - PubMed
  17. Int J Cancer. 2004 Aug 10;111(1):111-6 - PubMed
  18. Chem Biol Drug Des. 2013 Jan;81(1):136-47 - PubMed
  19. Biochim Biophys Acta. 2009 Dec;1796(2):281-92 - PubMed
  20. Oncogene. 1995 Apr 20;10 (8):1597-605 - PubMed
  21. Oncogene. 2004 Apr 29;23(20):3670-80 - PubMed
  22. Am J Pathol. 2003 May;162(5):1431-9 - PubMed
  23. Jpn J Cancer Res. 1994 Aug;85(8):831-9 - PubMed
  24. J Biol Chem. 2004 Dec 31;279(53):55924-36 - PubMed
  25. Oncogene. 2001 Aug 2;20(34):4685-95 - PubMed
  26. Cancer Sci. 2006 Oct;97(10 ):1061-9 - PubMed
  27. J Biol Chem. 1994 Aug 5;269(31):19679-82 - PubMed
  28. Nat Med. 1999 Jun;5(6):707-10 - PubMed
  29. J Cell Sci. 2010 Apr 1;123(Pt 7):1007-13 - PubMed
  30. Clin Cancer Res. 1997 Dec;3(12 Pt 1):2309-16 - PubMed
  31. Cancer Res. 2004 May 1;64(9):2984-7 - PubMed
  32. J Cell Sci. 2005 Oct 1;118(Pt 19):4415-25 - PubMed
  33. J Mol Med (Berl). 2008 May;86(5):507-22 - PubMed
  34. Chem Biol. 1997 Jun;4(6):461-71 - PubMed
  35. Angiogenesis. 2014 Jan;17 (1):17-26 - PubMed
  36. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10379-84 - PubMed
  37. Trends Biochem Sci. 1998 Jul;23(7):263-7 - PubMed
  38. Biochemistry. 2005 May 10;44(18):6867-76 - PubMed
  39. J Biol Chem. 2002 Jul 19;277(29):26396-402 - PubMed
  40. Curr Mol Med. 2013 Jan;13(1):24-57 - PubMed
  41. J Pathol. 2003 Aug;200(5):589-95 - PubMed
  42. Nucleic Acids Res. 2004 Jul 22;32(13):e109 - PubMed
  43. Drug Resist Updat. 2010 Feb-Apr;13(1-2):16-28 - PubMed
  44. J Mol Biol. 2008 Oct 31;383(1):62-77 - PubMed
  45. Mol Cancer Ther. 2008 Apr;7(4):993-9 - PubMed
  46. J Biol Chem. 2002 Feb 15;277(7):5229-35 - PubMed
  47. FEBS Lett. 2010 Aug 4;584(15):3269-74 - PubMed

Publication Types