Display options
Share it on

Eur Phys J E Soft Matter. 2015 Jun;38(6):54. doi: 10.1140/epje/i2015-15054-y. Epub 2015 Jun 22.

Effective substrate potentials with quasicrystalline symmetry depend on the size of the adsorbed particles.

The European physical journal. E, Soft matter

Felix Rühle, Matthias Sandbrink, Holger Stark, Michael Schmiedeberg

Affiliations

  1. Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
  2. Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
  3. Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany. [email protected].

PMID: 26087915 DOI: 10.1140/epje/i2015-15054-y

Abstract

We explore the effective potential landscapes that extended particles experience when adsorbed on the surface of quasicrystals. Commonly, these are solids with long-ranged order but no translational symmetry. The effective potentials significantly depend on the size of the adsorbed particles. We show how changing the particle radius changes the so-called local isomorphism class of the effective quasicrystalline pattern. This means effective potentials for different particle sizes cannot directly be mapped onto each other. Our theoretical predictions are confirmed by Monte Carlo simulations. The results are important for colloidal particles with different sizes that are subjected to laser fields with quasicrystalline symmetry as well as for systems where extended molecules are deposited onto the surface of metallic quasicrystals.

References

  1. Phys Rev Lett. 2014 Aug 29;113(9):098304 - PubMed
  2. Phys Rev Lett. 2013 Nov 1;111(18):185304 - PubMed
  3. Phys Rev Lett. 2011 Feb 11;106(6):060603 - PubMed
  4. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7214-8 - PubMed
  5. Phys Rev Lett. 2005 Sep 23;95(13):136104 - PubMed
  6. J Phys Condens Matter. 2009 Feb 4;21(5):055009 - PubMed
  7. Phys Rev Lett. 2006 Oct 6;97(14):147003 - PubMed
  8. Eur Phys J E Soft Matter. 2010 May;32(1):25-34 - PubMed
  9. J Chem Phys. 2012 Dec 14;137(22):224705 - PubMed
  10. Eur Phys J E Soft Matter. 2013 Mar;36(3):25 - PubMed
  11. Science. 1990 Aug 17;249(4970):749-54 - PubMed
  12. J Chem Phys. 2012 May 7;136(17):174705 - PubMed
  13. Phys Rev Lett. 2004 Apr 2;92(13):135507 - PubMed
  14. Nat Commun. 2013;4:2715 - PubMed
  15. Phys Rev Lett. 2014 Aug 15;113(7):079603 - PubMed
  16. Phys Rev Lett. 2014 Aug 15;113(7):079602 - PubMed
  17. Phys Rev Lett. 2002 Oct 7;89(15):156104 - PubMed
  18. Phys Rev Lett. 2014 Jun 27;112(25):255501 - PubMed
  19. Phys Rev B Condens Matter. 1986 Jul 15;34(2):596-616 - PubMed
  20. Eur Phys J E Soft Matter. 2007 Dec;24(4):367-77 - PubMed
  21. Phys Rev Lett. 2014 Aug 15;113(7):079601 - PubMed
  22. Nature. 2008 Jul 24;454(7203):501-4 - PubMed
  23. Phys Rev B Condens Matter. 1986 Jul 15;34(2):617-647 - PubMed
  24. Annu Rev Phys Chem. 2008;59:129-52 - PubMed
  25. Nature. 2014 Feb 13;506(7487):208-11 - PubMed
  26. Phys Rev Lett. 2009 Feb 6;102(5):055501 - PubMed
  27. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1810-4 - PubMed
  28. J Phys Condens Matter. 2010 Nov 3;22(43):433002 - PubMed
  29. Phys Rev Lett. 1985 Apr 8;54(14):1520-1523 - PubMed
  30. Phys Rev Lett. 2012 Aug 3;109(5):058301 - PubMed
  31. Nano Lett. 2014 Mar 12;14(3):1184-9 - PubMed
  32. J Phys Condens Matter. 2012 Jul 18;24(28):284101 - PubMed
  33. Phys Rev Lett. 2008 Nov 21;101(21):218302 - PubMed
  34. Nat Mater. 2015 Jan;14(1):109-16 - PubMed
  35. Phys Rev Lett. 2012 May 25;108(21):218301 - PubMed

Publication Types