Display options
Share it on

Genes Chromosomes Cancer. 2015 Aug;54(8):472-481. doi: 10.1002/gcc.22258. Epub 2015 May 29.

Transflip mutations produce deletions in pancreatic cancer.

Genes, chromosomes & cancer

Alexis L Norris, Hirohiko Kamiyama, Alvin Makohon-Moore, Aparna Pallavajjala, Laura A Morsberger, Kurt Lee, Denise Batista, Christine A Iacobuzio-Donahue, Ming-Tseh Lin, Alison P Klein, Ralph H Hruban, Sarah J Wheelan, James R Eshleman

Affiliations

  1. Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.
  2. Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.

PMID: 26031834 PMCID: PMC4833645 DOI: 10.1002/gcc.22258

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is driven by the inactivation of the tumor suppressor genes (TSGs), CDKN2A (P16) and SMAD4 (DPC4), commonly by homozygous deletions (HDs). Using a combination of high density single-nucleotide polymorphism (SNP) microarray and whole genome sequencing (WGS), we fine-mapped novel breakpoints surrounding deletions of CDKN2A and SMAD4 and characterized them by their underlying structural variants (SVs). Only one third of CDKN2A and SMAD4 deletions (6 of 18) were simple interstitial deletions, rather, the majority of deletions were caused by complex rearrangements, specifically, a translocation on one side of the TSG in combination with an inversion on the other side. We designate these as "TransFlip" mutations. Characteristics of TransFlip mutations are: (1) a propensity to target the TSGs CDKN2A and SMAD4 (P < 0.005), (2) not present in the germline of the examined samples, (3) non-recurrent breakpoints, (4) relatively small (47 bp to 3.4 kb) inversions, (5) inversions can be either telomeric or centromeric to the TSG, and (6) non-reciprocal, and non-recurrent translocations. TransFlip mutations are novel complex genomic rearrangements with unique breakpoint signatures in pancreatic cancer. We hypothesize that they are a common but poorly understood mechanism of TSG inactivation in human cancer. © 2015 Wiley Periodicals, Inc.

© 2015 Wiley Periodicals, Inc.

References

  1. Genes Chromosomes Cancer. 1994 Feb;9(2):93-100 - PubMed
  2. Nature. 2010 Oct 28;467(7319):1109-13 - PubMed
  3. Cancer Genet Cytogenet. 2007 Apr 1;174(1):57-60 - PubMed
  4. Nat Genet. 2012 Mar 04;44(4):390-7, S1 - PubMed
  5. Genes Chromosomes Cancer. 2013 Apr;52(4):402-9 - PubMed
  6. Blood. 1997 Nov 1;90(9):3720-6 - PubMed
  7. Cell. 2011 Jan 7;144(1):27-40 - PubMed
  8. Cancer Biol Ther. 2005 May;4(5):548-54 - PubMed
  9. J Hum Genet. 2004;49(10 ):586-9 - PubMed
  10. Science. 1987 Mar 13;235(4794):1394-9 - PubMed
  11. Nature. 2012 Nov 15;491(7424):399-405 - PubMed
  12. Nucleic Acids Res. 2015 Feb 27;43(4):2188-98 - PubMed
  13. Nature. 2010 Feb 18;463(7283):893-8 - PubMed
  14. Science. 2008 Sep 26;321(5897):1801-6 - PubMed
  15. Oncogene. 2003 Jun 12;22(24):3792-8 - PubMed
  16. Cancer Biol Ther. 2005 Jan;4(1):83-6 - PubMed
  17. Cytogenet Genome Res. 2007;118(2-4):148-56 - PubMed
  18. Cell. 2013 Apr 25;153(3):666-77 - PubMed
  19. Science. 1996 Jan 19;271(5247):350-3 - PubMed
  20. Fam Cancer. 2015 Mar;14(1):95-103 - PubMed
  21. Genes Chromosomes Cancer. 2005 Jan;42(1):58-67 - PubMed
  22. Nature. 2005 Apr 14;434(7035):917-21 - PubMed
  23. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4542-7 - PubMed
  24. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4 - PubMed
  25. Clin Cancer Res. 2013 Mar 1;19(5):1139-46 - PubMed
  26. Nat Genet. 1994 Sep;8(1):27-32 - PubMed
  27. Sci Transl Med. 2010 Feb 24;2(20):20ra14 - PubMed
  28. Science. 2014 Aug 01;345(6196):1251343 - PubMed

Publication Types

Grant support