Display options
Share it on

Front Microbiol. 2015 Jun 10;6:560. doi: 10.3389/fmicb.2015.00560. eCollection 2015.

From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus.

Frontiers in microbiology

Nadja Jeßberger, Viktoria M Krey, Corinna Rademacher, Maria-Elisabeth Böhm, Ann-Katrin Mohr, Monika Ehling-Schulz, Siegfried Scherer, Erwin Märtlbauer

Affiliations

  1. Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München Oberschleißheim, Germany.
  2. Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany.
  3. Functional Microbiology, Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine Vienna Vienna, Austria.

PMID: 26113843 PMCID: PMC4462024 DOI: 10.3389/fmicb.2015.00560

Abstract

In recent years Bacillus cereus has gained increasing importance as a food poisoning pathogen. It is the eponymous member of the B. cereus sensu lato group that consists of eight closely related species showing impressive diversity of their pathogenicity. The high variability of cytotoxicity and the complex regulatory network of enterotoxin expression have complicated efforts to predict the toxic potential of new B. cereus isolates. In this study, comprehensive analyses of enterotoxin gene sequences, transcription, toxin secretion and cytotoxicity were performed. For the first time, these parameters were compared in a whole set of B. cereus strains representing isolates of different origin (food or food poisoning outbreaks) and of different toxic potential (enteropathogenic and apathogenic) to elucidate potential starting points of strain-specific differential toxicity. While toxin gene sequences were highly conserved and did not allow for differentiation between high and low toxicity strains, comparison of nheB and hblD enterotoxin gene transcription and Nhe and Hbl protein titers revealed not only strain-specific differences but also incongruence between toxin gene transcripts and toxin protein levels. With one exception all strains showed comparable capability of protein secretion and so far, no secretion patterns specific for high and low toxicity strains were identified. These results indicate that enterotoxin expression is more complex than expected, possibly involving the orchestrated interplay of different transcriptional regulator proteins, as well as posttranscriptional and posttranslational regulatory mechanisms plus additional influences of environmental conditions.

Keywords: Bacillus cereus; Hbl; Nhe; enterotoxins; food poisoning; host cell cytotoxicity

References

  1. Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 - PubMed
  2. Appl Environ Microbiol. 1999 Oct;65(10):4470-4 - PubMed
  3. Mol Syst Biol. 2011 Oct 11;7:539 - PubMed
  4. Mol Microbiol. 2012 Jul;85(1):67-88 - PubMed
  5. J Bacteriol. 2007 Apr;189(7):2813-24 - PubMed
  6. RNA. 2007 Apr;13(4):573-82 - PubMed
  7. PLoS One. 2008 Jul 30;3(7):e2793 - PubMed
  8. Microbiology. 2009 Mar;155(Pt 3):922-31 - PubMed
  9. J Bacteriol. 2006 Sep;188(18):6640-51 - PubMed
  10. Nucleic Acids Res. 2010 Oct;38(19):6637-51 - PubMed
  11. Mol Microbiol. 2000 Oct;38(2):254-61 - PubMed
  12. Int J Food Microbiol. 1995 Dec;28(2):145-55 - PubMed
  13. BMC Microbiol. 2012 Jun 25;12:125 - PubMed
  14. FEMS Microbiol Rev. 2008 Jul;32(4):579-606 - PubMed
  15. J Microbiol Methods. 2010 Nov;83(2):202-10 - PubMed
  16. Appl Environ Microbiol. 2010 Feb;76(4):1232-40 - PubMed
  17. Methods. 2001 Dec;25(4):402-8 - PubMed
  18. Appl Environ Microbiol. 2007 Mar;73(5):1481-8 - PubMed
  19. Int J Food Microbiol. 2014 Oct 1;188:122-7 - PubMed
  20. J Appl Microbiol. 2004;97(1):214-9 - PubMed
  21. Proteomics. 2005 Sep;5(14):3696-711 - PubMed
  22. Mol Microbiol. 2005 Sep;57(5):1460-73 - PubMed
  23. Appl Environ Microbiol. 2012 Apr;78(8):2553-61 - PubMed
  24. Curr Opin Struct Biol. 2006 Jun;16(3):299-306 - PubMed
  25. J Dairy Res. 1997 Nov;64(4):551-9 - PubMed
  26. Infect Immun. 1995 Nov;63(11):4423-8 - PubMed
  27. J Clin Microbiol. 2010 Apr;48(4):1358-65 - PubMed
  28. Microbiology. 2000 Jun;146 ( Pt 6):1371-80 - PubMed
  29. Cell Microbiol. 2004 Feb;6(2):155-66 - PubMed
  30. J Food Prot. 2012 Apr;75(4):690-4 - PubMed
  31. Nat Methods. 2011 Sep 29;8(10):785-6 - PubMed
  32. Microbiology. 2004 Mar;150(Pt 3):601-11 - PubMed
  33. PLoS One. 2014 Aug 01;9(8):e103326 - PubMed
  34. FEMS Microbiol Lett. 2006 Jul;260(2):232-40 - PubMed
  35. Toxicon. 2014 Jan;77:49-57 - PubMed
  36. Microbiology. 2005 Jan;151(Pt 1):183-97 - PubMed
  37. Mol Microbiol. 1999 Jun;32(5):1043-53 - PubMed
  38. J Bacteriol. 2009 Jul;191(13):4419-26 - PubMed
  39. Mol Nutr Food Res. 2004 Dec;48(7):479-87 - PubMed
  40. J Bacteriol. 2014 Jan;196(2):424-35 - PubMed
  41. J Appl Bacteriol. 1990 Jul;69(1):73-9 - PubMed
  42. Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33 - PubMed
  43. Front Microbiol. 2013 Feb 22;4:32 - PubMed
  44. BMC Microbiol. 2010 Nov 30;10:304 - PubMed
  45. BMC Microbiol. 2007 May 21;7:43 - PubMed
  46. J Appl Microbiol. 2009 Sep;107(3):795-804 - PubMed
  47. Appl Environ Microbiol. 2005 Dec;71(12):8214-20 - PubMed
  48. PLoS One. 2013 Apr 16;8(4):e61404 - PubMed
  49. J Clin Microbiol. 1996 Dec;34(12):2888-93 - PubMed
  50. Infect Immun. 2012 Feb;80(2):832-8 - PubMed
  51. Trends Microbiol. 2003 Jun;11(6):280-5 - PubMed
  52. Environ Microbiol. 2008 Apr;10(4):851-65 - PubMed
  53. J Bacteriol. 2006 May;188(10):3551-71 - PubMed
  54. Res Microbiol. 2010 Jan-Feb;161(1):30-9 - PubMed
  55. Trends Microbiol. 2006 Jul;14(7):294-8 - PubMed
  56. Cell Microbiol. 2011 Jan;13(1):92-108 - PubMed
  57. Nucleic Acids Res. 2012 Jul;40(12):5706-17 - PubMed
  58. BMC Microbiol. 2008 Apr 16;8:62 - PubMed
  59. Arch Microbiol. 2004 Sep;182(1):90-5 - PubMed
  60. FEMS Microbiol Lett. 2006 Apr;257(2):293-8 - PubMed
  61. Nucleic Acids Res. 2002 May 1;30(9):e36 - PubMed
  62. Appl Environ Microbiol. 2007 Mar;73(6):1892-8 - PubMed
  63. J Appl Microbiol. 2009 Sep;107(3):821-9 - PubMed
  64. Appl Environ Microbiol. 2005 Jan;71(1):105-13 - PubMed
  65. FEMS Microbiol Lett. 1996 Aug 1;141(2-3):151-6 - PubMed
  66. Comput Appl Biosci. 1997 Jun;13(3):227-30 - PubMed
  67. J Clin Microbiol. 2002 Aug;40(8):3053-6 - PubMed
  68. J Microbiol Methods. 2009 Sep;78(3):265-70 - PubMed
  69. FEMS Microbiol Lett. 1999 Aug 15;177(2):225-9 - PubMed
  70. FEMS Microbiol Ecol. 2013 Jun;84(3):433-50 - PubMed
  71. Curr Microbiol. 2006 Sep;53(3):222-6 - PubMed
  72. Int J Syst Evol Microbiol. 2013 Jan;63(Pt 1):31-40 - PubMed
  73. Int J Med Microbiol. 2000 Oct;290(4-5):295-9 - PubMed
  74. Int J Food Microbiol. 2009 Sep 30;135(1):15-21 - PubMed

Publication Types