Display options
Share it on

Source Code Biol Med. 2015 May 22;10:7. doi: 10.1186/s13029-015-0037-3. eCollection 2015.

Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment.

Source code for biology and medicine

Md Anayet Hasan, Md Habibul Hasan Mazumder, Afrin Sultana Chowdhury, Amit Datta, Md Arif Khan

Affiliations

  1. Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331 Bangladesh.
  2. Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh.

PMID: 26089981 PMCID: PMC4472393 DOI: 10.1186/s13029-015-0037-3

Abstract

BACKGROUND: Malaria has been a major life threatening mosquito borne disease from long since. Unavailability of any effective vaccine and recent emergence of multi drug resistant strains of malaria pathogen Plasmodium falciparum continues to cause persistent deaths in the tropical and sub-tropical region. As a result, demands for new targets for more effective anti-malarial drugs are escalating. Transketolase is an enzyme of the pentose phosphate pathway; a novel pathway which is involved in energy generation and nucleic acid synthesis. Moreover, significant difference in homology between Plasmodium falciparum transketolase (Pftk) and human (Homo sapiens) transketolase makes it a suitable candidate for drug therapy. Our present study is aimed to predict the 3D structure of Plasmodium falciparum transketolase and design an inhibitor against it.

RESULTS: The primary and secondary structural features of the protein is calculated by ProtParam and SOPMA respectively which revealed the protein is composed of 43.3 % alpha helix and 33.04 % random coils along with 15.62 % extended strands, 8.04 % beta turns. The three dimensional structure of the transketolase is constructed using homology modeling tool MODELLAR utilizing several available transketolase structures as templates. The structure is then subjected to deep optimization and validated by structure validation tools PROCHECK, VERIFY 3D, ERRAT, QMEAN. The predicted model scored 0.74 for global model reliability in PROCHECK analysis, which ensures the quality of the model. According to VERIFY 3D the predicted model scored 0.77 which determines good environmental profile along with ERRAT score of 78.313 which is below 95 % rejection limit. Protein-protein and residue-residue interaction networks are generated by STRING and RING server respectively. CASTp server was used to analyze active sites and His 109, Asn 108 and His 515 are found to be more positive site to dock the substrate, in addition molecular docking simulation with Autodock vina determined the estimated free energy of molecular binding was of -6.6 kcal/mol for most favorable binding of 6'-Methyl-Thiamin Diphosphate.

CONCLUSION: This predicted structure of Pftk will serve first hand in the future development of effective Pftk inhibitors with potential anti-malarial activity. However, this is a preliminary study of designing an inhibitor against Plasmodium falciparum 3D7; the results await justification by in vitro and in vivo experimentations.

Keywords: Docking studies; Drug target; Homology modeling; Plasmodium falciparum 3D7; Transketolase

References

  1. Protein Sci. 1998 Sep;7(9):1884-97 - PubMed
  2. BMC Struct Biol. 2009 May 20;9:35 - PubMed
  3. J Biochem. 1980 Dec;88(6):1895-8 - PubMed
  4. Nat Protoc. 2007;2(10):2366-82 - PubMed
  5. Nature. 2002 Feb 7;415(6872):670-2 - PubMed
  6. Curr Med Chem. 2008;15(2):161-71 - PubMed
  7. J Theor Biol. 2014 Dec 7;362:44-52 - PubMed
  8. PLoS Comput Biol. 2010 Nov 04;6(11):e1000978 - PubMed
  9. J Mol Biol. 1999 Oct 22;293(2):321-31 - PubMed
  10. Biophys J. 2011 Nov 16;101(10):2525-34 - PubMed
  11. Bioinformatics. 1999 May;15(5):413-21 - PubMed
  12. Proteins. 2008 Apr;71(1):261-77 - PubMed
  13. Nat Med. 2013 Feb;19(2):156-67 - PubMed
  14. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  15. Int J Antimicrob Agents. 2007 Jul;30(1):4-10 - PubMed
  16. Mol Immunol. 2015 May;65(1):189-204 - PubMed
  17. Curr Drug Targets. 2009 Mar;10(3):271-8 - PubMed
  18. J Mol Graph Model. 2001;19(1):26-59 - PubMed
  19. Genomics Inform. 2014 Dec;12(4):268-75 - PubMed
  20. Nature. 2002 Feb 7;415(6872):673-9 - PubMed
  21. Genome Biol. 2007;8(5):R92 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14902-7 - PubMed
  23. Protein Sci. 1993 Sep;2(9):1511-9 - PubMed
  24. Lancet. 2012 Feb 4;379(9814):413-31 - PubMed
  25. Folia Biol (Praha). 2000;46(6):210-8 - PubMed
  26. EMBO J. 1986 Apr;5(4):823-6 - PubMed
  27. Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005 - PubMed
  28. FEBS Lett. 2011 Jun 6;585(11):1551-62 - PubMed
  29. Methods Enzymol. 1997;277:396-404 - PubMed
  30. Nature. 2002 Oct 3;419(6906):498-511 - PubMed
  31. Mol Biochem Parasitol. 2011 Jan;175(1):21-9 - PubMed
  32. Nucleic Acids Res. 2000 Sep 15;28(18):3442-4 - PubMed
  33. Malar J. 2005 Mar 18;4:17 - PubMed
  34. Anal Biochem. 1989 Nov 1;182(2):319-26 - PubMed
  35. Protein Sci. 2002 Apr;11(4):739-56 - PubMed
  36. J Biomol Struct Dyn. 2015;33(11):2421-41 - PubMed
  37. J Mol Biol. 1963 Jul;7:95-9 - PubMed
  38. J Comput Chem. 2010 Jan 30;31(2):455-61 - PubMed
  39. J Bacteriol. 1992 Nov;174(22):7337-44 - PubMed
  40. PLoS One. 2010 Feb 23;5(2):e9391 - PubMed
  41. Nucleic Acids Res. 2009 Jan;37(Database issue):D657-60 - PubMed
  42. J Clin Invest. 2010 Dec;120(12):4168-78 - PubMed
  43. Mol Biochem Parasitol. 2008 Jul;160(1):32-41 - PubMed
  44. Trends Biochem Sci. 2011 Apr;36(4):179-82 - PubMed
  45. Science. 1991 Jul 12;253(5016):164-70 - PubMed
  46. Methods Enzymol. 2006;411:408-21 - PubMed
  47. Nucleic Acids Res. 2003 Jul 1;31(13):3701-8 - PubMed
  48. J Biomol NMR. 1996 Dec;8(4):477-86 - PubMed
  49. Electrophoresis. 1997 Dec;18(15):2714-23 - PubMed
  50. Toxicol Int. 2014 Sep-Dec;21(3):269-74 - PubMed
  51. J Biomol NMR. 2014 Apr;58(4):259-85 - PubMed
  52. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 - PubMed
  53. Nucleic Acids Res. 2007 Jan;35(Database issue):D590-4 - PubMed
  54. Drug Target Insights. 2014 Jan 13;8:1-9 - PubMed
  55. Protein Eng. 1990 Dec;4(2):155-61 - PubMed
  56. Bioinformatics. 2011 Feb 1;27(3):343-50 - PubMed
  57. Biochem J. 2011 Jun 15;436(3):641-50 - PubMed
  58. Bioinformatics. 2011 Jul 15;27(14):2003-5 - PubMed
  59. Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13052-7 - PubMed
  60. Comput Appl Biosci. 1995 Dec;11(6):681-4 - PubMed
  61. Lancet Infect Dis. 2010 Aug;10(8):545-55 - PubMed
  62. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W116-8 - PubMed
  63. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W510-4 - PubMed
  64. J Mol Biol. 1993 Dec 5;234(3):779-815 - PubMed
  65. Traffic. 2015 May;16(5):461-75 - PubMed

Publication Types