Display options
Share it on

Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 01.

Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

Biomedical optics express

Robert J Zawadzki, Pengfei Zhang, Azhar Zam, Eric B Miller, Mayank Goswami, Xinlei Wang, Ravi S Jonnal, Sang-Hyuck Lee, Dae Yu Kim, John G Flannery, John S Werner, Marie E Burns, Edward N Pugh, Rossiter, Pope, Jones, Hedengren

Affiliations

  1. UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA ; Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA ; Depts. of Ophthalmology & Vision Science and of Cell Biology & Human Anatomy 4303 Tupper Hall, Davis California 95616, USA ; [email protected].
  2. UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA.
  3. Center for Neuroscience, University of California, Davis Sacramento, CA 95817, USA.
  4. Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA.
  5. Beckman Laser Institute Korea & Biomed. Engineering, Dankook University, Cheonan, Chungnam 330-715, South Korea.
  6. Dept. of Molecular and Cellular Biology, University of California, Berkeley 94720, USA.
  7. Center for Neuroscience, University of California, Davis Sacramento, CA 95817, USA ; Depts. of Ophthalmology & Vision Science and of Cell Biology & Human Anatomy 4303 Tupper Hall, Davis California 95616, USA.
  8. UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA ; Depts. of Cell Biology & Human Anatomy, and of Physiology & Membrane Biology 4303 Tupper Hall, Davis California 95616, USA ; [email protected].

PMID: 26114038 PMCID: PMC4473753 DOI: 10.1364/BOE.6.002191

Abstract

Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

Keywords: (110.1080) Active or adaptive optics; (110.4500) Optical coherence tomography; (170.0110) Imaging systems; (170.4460) Ophthalmic optics and devices; (170.4470) Ophthalmology; (330.7324) Visual optics, comparative animal models

References

  1. IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98 - PubMed
  2. Sci Transl Med. 2013 Jun 12;5(189):189ra76 - PubMed
  3. J Comp Neurol. 1979 Nov 15;188(2):245-62 - PubMed
  4. Biomed Opt Express. 2013 Jul 09;4(8):1285-93 - PubMed
  5. Neuron. 2000 Sep;27(3):513-23 - PubMed
  6. Vision Res. 2014 Sep;102:71-9 - PubMed
  7. J Cell Biol. 1983 Jul;97(1):253-7 - PubMed
  8. Biomed Opt Express. 2014 Jan 21;5(2):547-59 - PubMed
  9. Biomed Opt Express. 2012 Oct 1;3(10):2537-49 - PubMed
  10. Biomed Opt Express. 2011 Jun 1;2(6):1674-86 - PubMed
  11. Opt Express. 2007 Oct 1;15(20):12636-53 - PubMed
  12. Invest Ophthalmol Vis Sci. 2013 Dec 19;54(13):8237-50 - PubMed
  13. J Neurosci. 2010 Sep 15;30(37):12495-507 - PubMed
  14. Mol Cell Biol. 2000 Jun;20(11):4106-14 - PubMed
  15. Vision Res. 2011 Jul 1;51(13):1379-96 - PubMed
  16. Neuron. 1992 Sep;9(3):429-40 - PubMed
  17. IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1007-19 - PubMed
  18. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14354-9 - PubMed
  19. Biomed Opt Express. 2011 Jun 1;2(6):1504-13 - PubMed
  20. J Gen Physiol. 2006 Apr;127(4):359-74 - PubMed
  21. Opt Express. 2004 May 31;12(11):2404-22 - PubMed
  22. J Comp Neurol. 1990 Feb 22;292(4):497-523 - PubMed
  23. Biomed Opt Express. 2013 Oct 17;4(11):2508-17 - PubMed
  24. Invest Ophthalmol Vis Sci. 2014 Oct 16;55(12):7904-18 - PubMed
  25. Appl Opt. 1987 Apr 15;26(8):1473-9 - PubMed
  26. Nat Protoc. 2014 Feb;9(2):323-36 - PubMed
  27. Vision Res. 2011 Feb 23;51(4):447-58 - PubMed
  28. Opt Express. 2005 Oct 17;13(21):8532-8546 - PubMed
  29. J Neurophysiol. 2013 May;109(9):2415-21 - PubMed
  30. Science. 2006 Apr 14;312(5771):217-24 - PubMed
  31. Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1691-8 - PubMed
  32. Biomed Opt Express. 2012 Apr 1;3(4):715-34 - PubMed
  33. J Vis. 2011 Jun 16;11(7):null - PubMed
  34. Opt Lett. 2007 Mar 15;32(6):659-61 - PubMed
  35. Ophthalmology. 2014 Jan;121(1):180-7 - PubMed
  36. Biomed Opt Express. 2011 Feb 28;2(4):717-38 - PubMed
  37. Opt Express. 2002 May 6;10(9):405-12 - PubMed
  38. Invest Ophthalmol Vis Sci. 2011 Jun 13;52(7):4151-7 - PubMed
  39. Opt Express. 2009 Nov 23;17(24):22190-200 - PubMed
  40. J Biomed Opt. 2013 May;18(5):56007 - PubMed
  41. J Cell Sci. 2004 Jun 15;117(Pt 14):3049-59 - PubMed
  42. Invest Ophthalmol Vis Sci. 2014 Jul 31;55(8):5314-9 - PubMed
  43. Vis Neurosci. 2001 Jul-Aug;18(4):615-23 - PubMed

Publication Types

Grant support