Display options
Share it on

Springerplus. 2015 Jun 13;4:258. doi: 10.1186/s40064-015-1037-0. eCollection 2015.

Endophytic bacterial diversity in the phyllosphere of Amazon Paullinia cupana associated with asymptomatic and symptomatic anthracnose.

SpringerPlus

Andréa Cristina Bogas, Almir José Ferreira, Welington Luiz Araújo, Spartaco Astolfi-Filho, Elliot Watanabe Kitajima, Paulo Teixeira Lacava, João Lúcio Azevedo

Affiliations

  1. Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, PO BOX 83, Piracicaba, SP 13400-970 Brazil.
  2. Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374-Ed. Biomédicas II, Cidade Universitária, São Paulo, SP 05508-900 Brazil.
  3. Molecular Diagnostic Laboratory, Biotechnology Division, Federal University of Amazon, Av. Gal. Rodrigo Octávio Jordão, 3000, Manaus, AM 69.077-000 Brazil.
  4. Department of Plant Pathology and Nematology, ''Luiz de Queiroz'' College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, SP 13418-900 Brazil.
  5. Center of Biological Sciences and Health, Federal University of São Carlos, Via Washington Luís km 235, PO BOX 676, São Carlos, SP 13565-905 Brazil.

PMID: 26090305 PMCID: PMC4467821 DOI: 10.1186/s40064-015-1037-0

Abstract

Endophytes colonize an ecological niche similar to that of phytopathogens, which make them candidate for disease suppression. Anthracnose is a disease caused by Colletotrichum spp., a phytopathogen that can infect guarana (Paullinia cupana), an important commercial crop in the Brazilian Amazon. We investigated the diversity of endophytic bacteria inhabiting the phyllosphere of asymptomatic and symptomatic anthracnose guarana plants. The PCR-denaturation gradient gel electrophoresis (PCR-DGGE) fingerprints revealed differences in the structure of the evaluated communities. Detailed analysis of endophytic bacteria composition using culture-dependent and 16S rRNA clone libraries revealed the presence of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria phyla. Firmicutes comprised the majority of isolates in asymptomatic plants (2.40E(-4)). However, cloning and sequencing of 16S rRNA revealed differences at the genus level for Neisseria (1.4E(-4)), Haemophilus (2.1E(-3)) and Arsenophonus (3.6E(-5)) in asymptomatic plants, Aquicella (3.5E(-3)) in symptomatic anthracnose plants, and Pseudomonas (1.1E(-3)), which was mainly identified in asymptomatic plants. In cross-comparisons of the endophytic bacterial communities as a whole, symptomatic anthracnose plants contained higher diversity, as reflected in the Shannon-Weaver and Simpson indices estimation (P < 0.05). Similarly, comparisons using LIBSHUFF and heatmap analysis for the relative abundance of operational taxonomic units (OTUs) showed differences between endophytic bacterial communities. These data are in agreement with the NMSD and ANOSIM analysis of DGGE profiles. Our results suggest that anthracnose can restructure endophytic bacterial communities by selecting certain strains in the phyllosphere of P. cupana. The understanding of these interactions is important for the development of strategies of biocontrol for Colletotrichum.

Keywords: Clone library; Colletotrichum; Culture dependent; Endophytes; Microbial diversity; PCR-DGGE

References

  1. Microbiol Res. 2014 Jan 20;169(1):83-98 - PubMed
  2. BMC Microbiol. 2013 Dec 01;13:274 - PubMed
  3. J Gen Appl Microbiol. 2008 Apr;54(2):83-92 - PubMed
  4. Microbiol Res. 2009;164(5):493-513 - PubMed
  5. ISME J. 2012 Oct;6(10):1812-22 - PubMed
  6. Appl Environ Microbiol. 2004 Sep;70(9):5485-92 - PubMed
  7. Mol Plant Microbe Interact. 2006 Aug;19(8):827-37 - PubMed
  8. Appl Environ Microbiol. 2010 Jun;76(12):4063-75 - PubMed
  9. Can J Microbiol. 2006 Nov;52(11):1036-45 - PubMed
  10. Microb Ecol. 2012 Apr;63(3):674-81 - PubMed
  11. Plant Biol (Stuttg). 2012 Jul;14(4):565-75 - PubMed
  12. Braz J Microbiol. 2012 Oct;43(4):1562-75 - PubMed
  13. Genet Mol Res. 2012 Oct 11;11(4):3711-20 - PubMed
  14. Appl Environ Microbiol. 2002 Oct;68(10):4906-14 - PubMed
  15. Lett Appl Microbiol. 2014 Feb;58(2):123-9 - PubMed
  16. Appl Environ Microbiol. 2011 Jul;77(14):5018-22 - PubMed
  17. FEMS Microbiol Ecol. 2008 Feb;63(2):169-80 - PubMed
  18. Plant Cell Rep. 2008 Jan;27(1):117-24 - PubMed
  19. Appl Environ Microbiol. 2003 Nov;69(11):6533-40 - PubMed
  20. Antonie Van Leeuwenhoek. 1998 Jan;73(1):127-41 - PubMed
  21. Annu Rev Plant Biol. 2013;64:807-38 - PubMed
  22. Appl Environ Microbiol. 2009 Aug;75(16):5363-72 - PubMed
  23. FEMS Microbiol Lett. 2014 Feb;351(2):187-94 - PubMed
  24. Microb Ecol. 2001 Apr;41(3):252-263 - PubMed
  25. J Appl Microbiol. 2011 May;110(5):1284-96 - PubMed
  26. PLoS One. 2009 Dec 14;4(12):e8230 - PubMed
  27. Appl Environ Microbiol. 2011 Sep;77(17):5934-44 - PubMed
  28. Syst Appl Microbiol. 2014 Jul;37(5):376-85 - PubMed
  29. Appl Environ Microbiol. 2002 May;68(5):2261-8 - PubMed
  30. Lett Appl Microbiol. 2004;39(1):55-9 - PubMed
  31. Antonie Van Leeuwenhoek. 2013 Nov;104(5):759-68 - PubMed
  32. Can J Microbiol. 2001 Mar;47(3):229-36 - PubMed
  33. Appl Environ Microbiol. 2010 Jun;76(11):3427-36 - PubMed
  34. Appl Environ Microbiol. 2009 Mar;75(6):1566-74 - PubMed
  35. PLoS One. 2013;8(2):e56329 - PubMed
  36. J Appl Microbiol. 2013 Mar;114(3):836-53 - PubMed
  37. Mol Biol Evol. 2007 Aug;24(8):1596-9 - PubMed
  38. Genome Res. 1998 Mar;8(3):175-85 - PubMed
  39. J Microbiol Methods. 2006 Jun;65(3):535-41 - PubMed
  40. BMC Microbiol. 2009 Jul 20;9:143 - PubMed

Publication Types