Display options
Share it on

Sci Rep. 2015 Jun 10;5:11188. doi: 10.1038/srep11188.

Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity.

Scientific reports

Li Dai, Watson Kuo, Ming-Chiang Chung

Affiliations

  1. Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan.
  2. 1] Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan [2] Center of Nanoscience and Nanotechnology, and Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan.
  3. 1] Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan [2] Physics Division, National Center for Theoretical Sciences, Hsinchu, 30013, Taiwan.

PMID: 26062033 PMCID: PMC5395956 DOI: 10.1038/srep11188

Abstract

We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning.

References

  1. Nano Lett. 2012 Dec 12;12(12):6414-9 - PubMed
  2. Phys Rev Lett. 2010 Jan 29;104(4):040502 - PubMed
  3. Phys Rev Lett. 2010 Oct 22;105(17):177002 - PubMed
  4. Nat Commun. 2012 Jul 17;3:964 - PubMed
  5. Nat Commun. 2013;4:1585 - PubMed
  6. Phys Rev Lett. 2013 Jun 21;110(25):250503 - PubMed
  7. Phys Rev Lett. 2008 Mar 7;100(9):096407 - PubMed
  8. Phys Rev Lett. 2011 Apr 1;106(13):130505 - PubMed
  9. Phys Rev Lett. 2006 Jun 23;96(24):240501 - PubMed
  10. Phys Rev Lett. 2011 Jun 3;106(22):220402 - PubMed
  11. Phys Rev Lett. 2006 Feb 24;96(7):070504 - PubMed
  12. Phys Rev Lett. 2012 Feb 10;108(6):066803 - PubMed
  13. Phys Rev Lett. 2013 Jun 14;110(24):243604 - PubMed
  14. Phys Rev Lett. 2001 May 28;86(22):5188-91 - PubMed
  15. Nat Nanotechnol. 2014 Jan;9(1):79-84 - PubMed
  16. Phys Rev Lett. 2012 Apr 20;108(16):166803 - PubMed
  17. Phys Rev Lett. 2010 Aug 13;105(7):077001 - PubMed

Publication Types