Display options
Share it on

Front Microbiol. 2015 May 05;6:401. doi: 10.3389/fmicb.2015.00401. eCollection 2015.

Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2.

Frontiers in microbiology

Giovanni Sandrini, Serena Cunsolo, J Merijn Schuurmans, Hans C P Matthijs, Jef Huisman

Affiliations

  1. Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands.
  2. Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands ; Department of Aquatic Ecology, Netherlands Institute of Ecology Wageningen, Netherlands.

PMID: 25999931 PMCID: PMC4419860 DOI: 10.3389/fmicb.2015.00401

Abstract

Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes.

Keywords: CO2-concentrating mechanisms; bicarbonate uptake; climate change; harmful algal blooms; inorganic carbon uptake; microarrays; microcystins; phytoplankton

References

  1. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13571-6 - PubMed
  2. Microbiology. 2000 Nov;146 ( Pt 11):2877-89 - PubMed
  3. Methods. 2001 Dec;25(4):402-8 - PubMed
  4. Mol Microbiol. 2002 Jan;43(2):425-35 - PubMed
  5. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):117-33 - PubMed
  6. Bioinformatics. 2003 Jan 22;19(2):185-93 - PubMed
  7. Neurosci Lett. 2003 Mar 13;339(1):62-6 - PubMed
  8. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  9. J Microbiol Methods. 2003 Nov;55(2):411-8 - PubMed
  10. J Biol Chem. 2004 Feb 13;279(7):5739-51 - PubMed
  11. Plant Physiol. 2003 Dec;133(4):2069-80 - PubMed
  12. Extremophiles. 2004 Apr;8(2):109-15 - PubMed
  13. Biochemistry. 2004 Aug 17;43(32):10308-13 - PubMed
  14. Nature. 2004 Sep 30;431(7008):566-9 - PubMed
  15. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18228-33 - PubMed
  16. Toxicol Appl Pharmacol. 2005 Mar 15;203(3):264-72 - PubMed
  17. FEBS Lett. 2005 Apr 25;579(11):2289-93 - PubMed
  18. Annu Rev Plant Biol. 2005;56:99-131 - PubMed
  19. Plant Physiol. 2005 Aug;138(4):2292-8 - PubMed
  20. Plant Physiol. 1988 Sep;88(1):6-9 - PubMed
  21. Plant Physiol. 1988 Nov;88(3):757-63 - PubMed
  22. Ecol Appl. 2006 Feb;16(1):313-27 - PubMed
  23. Plant Cell Environ. 2006 Sep;29(9):1812-9 - PubMed
  24. J Bacteriol. 2007 May;189(9):3335-47 - PubMed
  25. Eukaryot Cell. 2007 Aug;6(8):1251-9 - PubMed
  26. J Exp Bot. 2008;59(7):1441-61 - PubMed
  27. Plant Physiol. 2007 Aug;144(4):1946-59 - PubMed
  28. Science. 1994 Sep 9;265(5178):1568-70 - PubMed
  29. DNA Res. 2007 Dec 31;14(6):247-56 - PubMed
  30. Science. 2008 Apr 4;320(5872):57-8 - PubMed
  31. Plant Physiol. 2008 Jun;147(2):747-63 - PubMed
  32. BMC Genomics. 2008 Jun 05;9:274 - PubMed
  33. FEMS Microbiol Ecol. 2008 Sep;65(3):383-90 - PubMed
  34. Environ Sci Technol. 2009 Jan 1;43(1):12-9 - PubMed
  35. Nucleic Acids Res. 2009 Apr;37(6):e45 - PubMed
  36. PLoS One. 2009;4(4):e5331 - PubMed
  37. Ecol Lett. 2009 Dec;12(12):1326-35 - PubMed
  38. Environ Manage. 2010 Jan;45(1):105-12 - PubMed
  39. FEMS Microbiol Ecol. 2010 Nov;74(2):430-8 - PubMed
  40. Plant Physiol. 2011 Apr;155(4):1640-55 - PubMed
  41. PLoS One. 2011 Jan 19;6(1):e16208 - PubMed
  42. Photosynth Res. 2011 Sep;109(1-3):47-57 - PubMed
  43. ISME J. 2011 Sep;5(9):1438-50 - PubMed
  44. J Biol Chem. 2011 Jul 8;286(27):24007-14 - PubMed
  45. Microbiology. 2012 Feb;158(Pt 2):398-413 - PubMed
  46. Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):493-507 - PubMed
  47. Plant Cell. 2012 May;24(5):1952-71 - PubMed
  48. BMC Bioinformatics. 2012 Jun 18;13:134 - PubMed
  49. Environ Microbiol. 2013 Jun;15(6):1810-20 - PubMed
  50. PLoS One. 2013;8(3):e57139 - PubMed
  51. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6448-52 - PubMed
  52. Environ Int. 2013 Sep;59:303-27 - PubMed
  53. PLoS One. 2013 Aug 12;8(8):e70747 - PubMed
  54. Plant Cell Physiol. 2013 Nov;54(11):1780-90 - PubMed
  55. ISME J. 2014 Mar;8(3):589-600 - PubMed
  56. Plant Physiol. 2014 Feb;164(2):805-18 - PubMed
  57. Ecol Lett. 2014 Aug;17(8):951-60 - PubMed
  58. PLoS One. 2014 Aug 13;9(8):e104325 - PubMed
  59. Appl Environ Microbiol. 2015 Jan;81(2):544-54 - PubMed
  60. J Phycol. 2009 Oct;45(5):1052-61 - PubMed
  61. J Bacteriol. 1997 Apr;179(8):2678-89 - PubMed
  62. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  63. Mol Microbiol. 1997 Nov;26(4):779-87 - PubMed
  64. N Engl J Med. 1998 Mar 26;338(13):873-8 - PubMed

Publication Types