Display options
Share it on

EJNMMI Res. 2014 Dec;4(1):34. doi: 10.1186/s13550-014-0034-6. Epub 2014 Sep 09.

Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [(18)F] FDG-PET imaging combined with proteomic approaches.

EJNMMI research

Tetyana Tegnebratt, Elisabeth Ruge, Sabine Bader, Nobuya Ishii, Satoshi Aida, Yasushi Yoshimura, Chia-Huey Ooi, Li Lu, Nicholas Mitsios, Valerie Meresse, Jan Mulder, Michael Pawlak, Miro Venturi, Jean Tessier, Sharon Stone-Elander

Affiliations

  1. Karolinska Institutet and Department of Neuroradiology, R3:00, MicroPET and Clinical Neurosciences, Karolinska University Hospital, Stockholm, 17176, Sweden, [email protected].

PMID: 26116108 PMCID: PMC4452660 DOI: 10.1186/s13550-014-0034-6

Abstract

BACKGROUND: Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology.

METHODS: [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA).

RESULTS: We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts.

CONCLUSIONS: We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [(18)F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [(18)F] FDG-PET to optimize their clinical use.

References

  1. Bioorg Med Chem Lett. 2011 Mar 15;21(6):1795-801 - PubMed
  2. Mol Cancer Ther. 2006 Oct;5(10):2512-21 - PubMed
  3. Cancer Res. 2013 Jul 1;73(13):4050-60 - PubMed
  4. Cancer Treat Rev. 2013 Dec;39(8):935-46 - PubMed
  5. Mol Cancer Ther. 2007 Aug;6(8):2209-19 - PubMed
  6. Clin Cancer Res. 2012 Sep 1;18(17):4806-19 - PubMed
  7. Mol Cancer Ther. 2011 Sep;10(9):1581-90 - PubMed
  8. J Nucl Med. 2004 Jun;45(6):930-2 - PubMed
  9. Clin Cancer Res. 2013 Nov 1;19(21):5811-3 - PubMed
  10. EJNMMI Res. 2013 Sep 16;3(1):67 - PubMed
  11. J Comput Assist Tomogr. 2002 Mar-Apr;26(2):185-90 - PubMed
  12. Nature. 2006 Jan 19;439(7074):358-62 - PubMed
  13. J Hematol Oncol. 2013 Apr 12;6:27 - PubMed
  14. Cancer Genomics Proteomics. 2007 May-Jun;4(3):157-64 - PubMed
  15. J Nucl Med. 2012 Dec;53(12 ):1836-46 - PubMed
  16. Oncogene. 2007 May 14;26(22):3291-310 - PubMed
  17. J Nucl Med. 2000 Jan;41(1):85-92 - PubMed
  18. Cancer Res. 2012 Jul 1;72(13):3228-37 - PubMed
  19. Mol Imaging Biol. 2013 Apr;15(2):175-85 - PubMed
  20. N Engl J Med. 2010 Aug 26;363(9):809-19 - PubMed
  21. Oncogene. 2001 Apr 12;20(16):1981-9 - PubMed
  22. Clin Cancer Res. 2008 Jan 15;14(2):342-6 - PubMed
  23. Nat Med. 2008 Dec;14(12):1351-6 - PubMed
  24. Neoplasia. 2005 Apr;7(4):369-79 - PubMed
  25. Eur J Nucl Med. 2000 Dec;27(12):1778-85 - PubMed
  26. Cancer Res. 2009 Jan 15;69(2):565-72 - PubMed
  27. PLoS One. 2010 Nov 29;5(11):e14124 - PubMed
  28. Clin Cancer Res. 2012 Sep 1;18(17):4794-805 - PubMed
  29. J Hematol Oncol. 2010 Feb 11;3:8 - PubMed
  30. Cancer Res. 2010 Nov 1;70(21):8736-47 - PubMed
  31. Lung Cancer. 2007 Jan;55(1):79-87 - PubMed
  32. EJNMMI Res. 2012 May 31;2(1):22 - PubMed
  33. Mol Cancer Ther. 2011 Aug;10(8):1440-9 - PubMed
  34. Nature. 2012 Oct 4;490(7418):61-70 - PubMed
  35. Eur J Cancer. 2003 Sep;39(14 ):2012-20 - PubMed
  36. J Clin Oncol. 2003 Jul 15;21(14 ):2651-7 - PubMed
  37. Nature. 2012 Mar 18;483(7391):613-7 - PubMed
  38. Clin Cancer Res. 2010 Jul 1;16(13):3329-34 - PubMed
  39. Mol Cancer Ther. 2008 Sep;7(9):2876-83 - PubMed
  40. Cancer Res. 2008 Aug 1;68(15):6145-53 - PubMed
  41. Clin Cancer Res. 2013 Nov 1;19(21):5940-51 - PubMed
  42. J Clin Oncol. 2000 Apr;18(8):1689-95 - PubMed
  43. Oncogene. 2013 Jul 18;32(29):3470-6 - PubMed
  44. Mol Cell Proteomics. 2009 Jul;8(7):1612-22 - PubMed
  45. Acta Radiol. 2008 Dec;49(10):1145-53 - PubMed
  46. Clin Cancer Res. 2009 Jul 15;15(14):4518-20 - PubMed
  47. Eur J Nucl Med Mol Imaging. 2003 Jun;30 Suppl 1:S97-105 - PubMed
  48. Lancet Oncol. 2012 Aug;13(8):773-81 - PubMed

Publication Types