Display options
Share it on

Biophys Rev. 2015;7(2):175-182. doi: 10.1007/s12551-015-0163-9. Epub 2015 Feb 04.

Global low-frequency motions in protein allostery: CAP as a model system.

Biophysical reviews

Philip D Townsend, Thomas L Rodgers, Ehmke Pohl, Mark R Wilson, Tom C B McLeish, Martin J Cann

Affiliations

  1. Biophysical Sciences Institute, Durham University, Durham, UK ; School of Biological and Biomedical Sciences, Durham University, Durham, UK.
  2. Biophysical Sciences Institute, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK ; School of Chemical Engineering and Analytical Sciences, University of Manchester, Manchester, UK.
  3. Biophysical Sciences Institute, Durham University, Durham, UK ; School of Biological and Biomedical Sciences, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK.
  4. Biophysical Sciences Institute, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK.
  5. Biophysical Sciences Institute, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK ; Department of Physics, Durham University, Durham, UK.

PMID: 26000062 PMCID: PMC4432019 DOI: 10.1007/s12551-015-0163-9

Abstract

Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. There is considerable evidence that allosteric cooperativity can be communicated by the modulation of protein dynamics without conformational change. The Catabolite Activator Protein (CAP) of

Keywords: Allostery; Catabolite activator protein; Dynamics; Elastic network model; Normal modes; Protein

References

  1. Biophys J. 2006 Sep 15;91(6):2055-62 - PubMed
  2. Annu Rev Biophys. 2012;41:585-609 - PubMed
  3. Nat Rev Microbiol. 2008 Aug;6(8):613-24 - PubMed
  4. Cell. 2011 Dec 23;147(7):1564-75 - PubMed
  5. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6987-92 - PubMed
  6. Eur Biophys J. 1984;11(2):103-9 - PubMed
  7. Phys Rev Lett. 2006 Feb 24;96(7):078104 - PubMed
  8. Nature. 2012 Aug 9;488(7410):236-40 - PubMed
  9. FEBS J. 2014 Jan;281(2):621-32 - PubMed
  10. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6571-5 - PubMed
  11. Protein Eng. 2001 Jan;14(1):1-6 - PubMed
  12. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4347-52 - PubMed
  13. Cell. 2012 Dec 7;151(6):1296-307 - PubMed
  14. BMC Bioinformatics. 2013 Jun 07;14:183 - PubMed
  15. Biophys J. 2010 May 19;98(10):2317-26 - PubMed
  16. Nat Struct Mol Biol. 2006 Sep;13(9):831-8 - PubMed
  17. J R Soc Interface. 2006 Feb 22;3(6):125-38 - PubMed
  18. Nature. 2009 Nov 19;462(7271):368-72 - PubMed
  19. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14253-8 - PubMed
  20. J Phys Chem B. 2013 Mar 21;117(11):3063-73 - PubMed
  21. Bioinformatics. 2011 Jun 1;27(11):1575-7 - PubMed
  22. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W610-4 - PubMed
  23. Phys Rev Lett. 1996 Aug 26;77(9):1905-1908 - PubMed
  24. Nature. 2014 Apr 17;508(7496):331-9 - PubMed
  25. Phys Biol. 2013 Oct;10(5):056004 - PubMed
  26. PLoS Biol. 2013 Sep;11(9):e1001651 - PubMed
  27. J Mol Biol. 2003 Sep 19;332(3):657-74 - PubMed
  28. Int J Mol Sci. 2009 Aug 04;10(8):3457-77 - PubMed
  29. Biochemistry. 1966 Jan;5(1):365-85 - PubMed
  30. Curr Opin Struct Biol. 2013 Feb;23(1):75-81 - PubMed
  31. Structure. 2010 Mar 10;18(3):402-14 - PubMed
  32. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4134-9 - PubMed
  33. Gene. 2008 Oct 1;422(1-2):7-13 - PubMed
  34. J Mol Evol. 2006 Oct;63(4):448-57 - PubMed
  35. BMC Bioinformatics. 2011 Jun 28;12:264 - PubMed
  36. J Mol Biol. 1965 May;12:88-118 - PubMed
  37. Phys Rev Lett. 2004 Aug 27;93(9):098104 - PubMed
  38. PLoS One. 2014 Dec 03;9(12):e113265 - PubMed
  39. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3696-700 - PubMed
  40. J Mol Biol. 2002 Jul 26;320(5):1011-24 - PubMed

Publication Types