Display options
Share it on

World J Cardiol. 2015 Jun 26;7(6):331-43. doi: 10.4330/wjc.v7.i6.331.

Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses.

World journal of cardiology

Ling Sun, Philippe Sucosky

Affiliations

  1. Ling Sun, Philippe Sucosky, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States.

PMID: 26131338 PMCID: PMC4478568 DOI: 10.4330/wjc.v7.i6.331

Abstract

AIM: To explore ex vivo the role of bone morphogenetic protein-4 (BMP-4) and transforming growth factor-beta1 (TGF-β1) in acute valvular response to fluid shear stress (FSS) abnormalities.

METHODS: Porcine valve leaflets were subjected ex vivo to physiologic FSS, supra-physiologic FSS magnitude at normal frequency and supra-physiologic FSS frequency at normal magnitude for 48 h in a double-sided cone-and-plate bioreactor filled with standard culture medium. The role of BMP-4 and TGF-β1 in the valvular response was investigated by promoting or inhibiting the downstream action of those cytokines via culture medium supplementation with BMP-4 or the BMP antagonist noggin, and TGF-β1 or the TGF-β1 inhibitor SB-431542, respectively. Fresh porcine leaflets were used as controls. Each experimental group consisted of six leaflet samples. Immunostaining and immunoblotting were performed to assess endothelial activation in terms of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expressions, paracrine signaling in terms of BMP-4 and TGF-β1 expressions and extracellular matrix (ECM) remodeling in terms of cathepsin L, cathepsin S, metalloproteinases (MMP)-2 and MMP-9 expressions. Immunostained images were quantified by normalizing the intensities of positively stained regions by the number of cells in each image while immunoblots were quantified by densitometry.

RESULTS: Regardless of the culture medium, physiologic FSS maintained valvular homeostasis. Tissue exposure to supra-physiologic FSS magnitude in standard medium stimulated paracrine signaling (TGF-β1: 467% ± 22% vs 100% ± 6% in fresh controls, BMP-4: 258% ± 22% vs 100% ± 4% in fresh controls; P < 0.05) and ECM degradation (MMP-2: 941% ± 90% vs 100% ± 19% in fresh controls, MMP-9: 1219% ± 190% vs 100% ± 16% in fresh controls, cathepsin L: 1187% ± 175% vs 100% ± 12% in fresh controls, cathepsin S: 603% ± 88% vs 100% ± 13% in fresh controls; P < 0.05), while BMP-4 supplementation also promoted fibrosa activation and TGF-β1 inhibition reduced MMP-9 expression to the native tissue level (MMP-9: 308% ± 153% with TGF-β1 inhibition vs 100% ± 16% in fresh control; P > 0.05). Supra-physiologic FSS frequency had no effect on endothelial activation and paracrine signaling regardless of the culture medium but TGF-β1 silencing attenuated FSS-induced ECM degradation via MMP-9 downregulation (MMP-9: 302% ± 182% vs 100% ± 42% in fresh controls; P > 0.05).

CONCLUSION: Valvular tissue is sensitive to FSS abnormalities. The TGF-β1 inhibitor SB-431542 is a potential candidate molecule for attenuating the effects of FSS abnormalities on valvular remodeling.

Keywords: Aortic valve; Bone morphogenetic protein; Calcification; Fluid shear stress; Transforming growth factor beta

References

  1. J Am Coll Cardiol. 1994 Apr;23(5):1162-70 - PubMed
  2. Blood Press. 2005;14(5):264-72 - PubMed
  3. Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H721-31 - PubMed
  4. Mol Pharmacol. 2002 Jul;62(1):65-74 - PubMed
  5. J Am Coll Cardiol. 2009 Apr 21;53(16):1456-8 - PubMed
  6. Arterioscler Thromb Vasc Biol. 2009 Feb;29(2):254-60 - PubMed
  7. PLoS One. 2012;7(10):e48843 - PubMed
  8. J Biomech. 2010 Jan 5;43(1):87-92 - PubMed
  9. Biomech Model Mechanobiol. 2012 Sep;11(7):1085-96 - PubMed
  10. Ann Thorac Surg. 2007 Mar;83(3):946-53 - PubMed
  11. Circulation. 2001 Mar 20;103(11):1522-8 - PubMed
  12. Circulation. 2003 May 6;107(17 ):2181-4 - PubMed
  13. Circulation. 2007 Jan 23;115(3):377-86 - PubMed
  14. J Biomech Eng. 2014 Apr;136(4):null - PubMed
  15. PLoS One. 2013 Dec 23;8(12):e84433 - PubMed
  16. Ann Biomed Eng. 2006 Nov;34(11):1655-65 - PubMed
  17. Age Ageing. 2004 Nov;33(6):538-44 - PubMed
  18. Cardiovasc Pathol. 2011 Nov-Dec;20(6):334-42 - PubMed
  19. Nature. 2005 Sep 8;437(7056):270-4 - PubMed
  20. J Am Coll Cardiol. 1997 Mar 1;29(3):630-4 - PubMed
  21. Circulation. 1994 Aug;90(2):844-53 - PubMed
  22. Mol Pharmacol. 2002 Jul;62(1):58-64 - PubMed
  23. J Heart Valve Dis. 2006 Sep;15(5):622-9 - PubMed
  24. Nature. 2002 Dec 12;420(6916):636-42 - PubMed
  25. Biochem Biophys Res Commun. 2002 Aug 16;296(2):267-73 - PubMed
  26. Circulation. 2005 Feb 22;111(7):920-5 - PubMed
  27. Am J Pathol. 2010 Jul;177(1):49-57 - PubMed
  28. J Biomech Eng. 2008 Jun;130(3):035001 - PubMed
  29. Heart. 2000 Jan;83(1):81-5 - PubMed
  30. Rev Endocr Metab Disord. 2006 Jun;7(1-2):51-65 - PubMed
  31. J Heart Valve Dis. 2011 Jul;20(4):449-63 - PubMed
  32. Ann Thorac Surg. 2003 Feb;75(2):457-65; discussion 465-6 - PubMed
  33. Arterioscler Thromb Vasc Biol. 2010 Dec;30(12 ):2482-6 - PubMed
  34. J Heart Valve Dis. 2008 Jan;17(1):62-73 - PubMed
  35. Cell. 1996 Aug 23;86(4):599-606 - PubMed
  36. Ann Biomed Eng. 2011 Aug;39(8):2174-85 - PubMed
  37. Ann Thorac Surg. 2002 Apr;73(4):1346-54 - PubMed
  38. J Am Coll Cardiol. 2014 Jun 10;63(22):2438-88 - PubMed
  39. Cardiovasc Pathol. 2000 Sep-Oct;9(5):281-6 - PubMed

Publication Types