Display options
Share it on

Nat Commun. 2015 Jul 02;6:7589. doi: 10.1038/ncomms8589.

Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography.

Nature communications

Daniel E Perea, Ilke Arslan, Jia Liu, Zoran Ristanović, Libor Kovarik, Bruce W Arey, Johannes A Lercher, Simon R Bare, Bert M Weckhuysen

Affiliations

  1. Pacific Northwest National Laboratory, Environmental Molecular Science Laboratory, 3335 Innovation Boulevard, Richland, Washington 99352, USA.
  2. Pacific Northwest National Laboratory, Institute for Integrated Catalysis, 902 Battelle Boulevard, Richland, Washington 99352, USA.
  3. Faculty of Science, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands.
  4. Department of Chemistry, TU Munich, Lichtenbergstrasse 4, Garching 85748, Germany.
  5. UOP LLC, a Honeywell Company, 25 E. Algonquin Road Des Plaines, Illinois 60016, USA.

PMID: 26133270 PMCID: PMC4506508 DOI: 10.1038/ncomms8589

Abstract

Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al-Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.

References

  1. Angew Chem Int Ed Engl. 2002 Feb 1;41(3):469-72 - PubMed
  2. Ultramicroscopy. 2013 Sep;132:114-20 - PubMed
  3. Nat Mater. 2008 Jul;7(7):551-5 - PubMed
  4. Angew Chem Int Ed Engl. 2007;46(38):7286-9 - PubMed
  5. J Am Chem Soc. 2004 Apr 14;126(14):4506-7 - PubMed
  6. Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13382-6 - PubMed
  7. Chemistry. 2011 Dec 2;17(49):13773-81 - PubMed
  8. Nat Mater. 2009 Dec;8(12):959-65 - PubMed
  9. Microsc Microanal. 2000 Sep;6(5):437-444 - PubMed
  10. Chemphyschem. 2013 Feb 25;14(3):496-9 - PubMed
  11. J Am Chem Soc. 2003 Jun 18;125(24):7435-42 - PubMed
  12. J Am Chem Soc. 2014 Jun 11;136(23):8296-306 - PubMed
  13. Microsc Res Tech. 2008 Jul;71(7):542-50 - PubMed
  14. Ultramicroscopy. 2007 Feb-Mar;107(2-3):131-9 - PubMed
  15. J Phys Chem Lett. 2014 Apr 17;5(8):1361-7 - PubMed
  16. Ultramicroscopy. 2009 Sep;109(10):1304-9 - PubMed
  17. J Am Chem Soc. 2005 Aug 10;127(31):10792-3 - PubMed
  18. Angew Chem Int Ed Engl. 2012 Apr 10;51(15):3616-9 - PubMed

Publication Types