Display options
Share it on

Sci Rep. 2015 Jun 22;5:11260. doi: 10.1038/srep11260.

Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.

Scientific reports

Jan Wedekind, Limei Xu, Sergey V Buldyrev, H Eugene Stanley, David Reguera, Giancarlo Franzese

Affiliations

  1. Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
  2. International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China.
  3. Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033 USA.
  4. Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 USA.

PMID: 26095898 PMCID: PMC4476038 DOI: 10.1038/srep11260

Abstract

The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments.

References

  1. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5660-4 - PubMed
  2. Phys Rev Lett. 1996 Dec 2;77(23):4832-4835 - PubMed
  3. J Chem Phys. 2007 Apr 7;126(13):134103 - PubMed
  4. J Phys Chem B. 2008 Sep 4;112(35):11060-3 - PubMed
  5. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10254-7 - PubMed
  6. Biophys Chem. 2001 Jun 15;91(1):1-20 - PubMed
  7. Phys Rev Lett. 1994 Aug 1;73(5):752-755 - PubMed
  8. Science. 1997 Sep 26;277(5334):1975-8 - PubMed
  9. Proteins. 2003 Apr 1;51(1):147-53 - PubMed
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061206 - PubMed
  11. Phys Rev Lett. 2006 Feb 3;96(4):046102 - PubMed
  12. Nanoscale. 2010 Nov;2(11):2346-57 - PubMed
  13. J Chem Phys. 2006 Dec 7;125(21):214505 - PubMed
  14. Phys Rev Lett. 2012 Aug 31;109(9):095702 - PubMed

Publication Types