Display options
Share it on

Nat Commun. 2015 Jun 22;6:7460. doi: 10.1038/ncomms8460.

Controlling dispersion forces between small particles with artificially created random light fields.

Nature communications

Georges Brügger, Luis S Froufe-Pérez, Frank Scheffold, Juan José Sáenz

Affiliations

  1. Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland.
  2. Depto. de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Fco. Tomas y Valiente 7, Madrid 28049, Spain.
  3. Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain.

PMID: 26096622 PMCID: PMC4557368 DOI: 10.1038/ncomms8460

Abstract

Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

References

  1. Science. 2002 Apr 5;296(5565):104-6 - PubMed
  2. Phys Rev Lett. 1990 Jan 22;64(4):408-411 - PubMed
  3. Phys Rev Lett. 2007 Oct 26;99(17):170403 - PubMed
  4. Science. 2002 Apr 5;296(5565):65-6 - PubMed
  5. Opt Express. 2014 Jul 28;22(15):18159-67 - PubMed
  6. Opt Express. 2011 Mar 14;19(6):4815-26 - PubMed
  7. Nature. 2008 Jan 10;451(7175):172-5 - PubMed
  8. Opt Lett. 2006 Aug 15;31(16):2429-31 - PubMed
  9. Opt Lett. 2000 Aug 1;25(15):1065-7 - PubMed
  10. Nature. 2008 Jun 12;453(7197):891-4 - PubMed
  11. Opt Lett. 2003 Jul 1;28(13):1069-71 - PubMed
  12. Phys Rev Lett. 2009 Mar 13;102(10):108302 - PubMed
  13. Adv Colloid Interface Sci. 2007 Oct 31;134-135:151-66 - PubMed
  14. Science. 1990 Aug 17;249(4970):749-54 - PubMed
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051401 - PubMed
  16. Opt Lett. 1986 May 1;11(5):288 - PubMed
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022125 - PubMed
  18. Opt Lett. 2013 Jul 15;38(14):2385-7 - PubMed
  19. Phys Rev Lett. 2006 Oct 20;97(16):160401 - PubMed
  20. Nature. 2008 Jul 24;454(7203):501-4 - PubMed
  21. Opt Lett. 1991 Oct 1;16(19):1463-5 - PubMed
  22. Adv Colloid Interface Sci. 2000 Feb 1;85(1):1-33 - PubMed
  23. Appl Opt. 1997 Apr 1;36(10):2107-13 - PubMed
  24. Nature. 2003 Jan 30;421(6922):513-7 - PubMed
  25. Phys Rev Lett. 2013 Jul 12;111(2):023601 - PubMed
  26. Phys Rev Lett. 2003 Jun 27;90(25 Pt 1):250801 - PubMed

Publication Types