Display options
Share it on

Front Pharmacol. 2015 Jun 26;6:137. doi: 10.3389/fphar.2015.00137. eCollection 2015.

Central mechanisms mediating the hypophagic effects of oleoylethanolamide and N-acylphosphatidylethanolamines: different lipid signals?.

Frontiers in pharmacology

Adele Romano, Bianca Tempesta, Gustavo Provensi, Maria B Passani, Silvana Gaetani

Affiliations

  1. Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome,Italy.
  2. Department of Neuroscience, Psychology, Drug Discovery and Child Health (NEUROFARBA), University of Florence , Florence, Italy.

PMID: 26167152 PMCID: PMC4481858 DOI: 10.3389/fphar.2015.00137

Abstract

The spread of "obesity epidemic" and the poor efficacy of many anti-obesity therapies in the long-term highlight the need to develop novel efficacious therapy. This necessity stimulates a large research effort to find novel mechanisms controlling feeding and energy balance. Among these mechanisms a great deal of attention has been attracted by a family of phospholipid-derived signaling molecules that play an important role in the regulation of food-intake. They include N-acylethanolamines (NAEs) and N-acylphosphatidylethanolamines (NAPEs). NAPEs have been considered for a long time simply as phospholipid precursors of the lipid mediator NAEs, but increasing body of evidence suggest a role in many physiological processes including the regulation of feeding behavior. Several observations demonstrated that among NAEs, oleoylethanolamide (OEA) acts as a satiety signal, which is generated in the intestine, upon the ingestion of fat, and signals to the central nervous system. At this level different neuronal pathways, including oxytocinergic, noradrenergic, and histaminergic neurons, seem to mediate its hypophagic action. Similarly to NAEs, NAPE (with particular reference to the N16:0 species) levels were shown to be regulated by the fed state and this finding was initially interpreted as fluctuations of NAE precursors. However, the observation that exogenously administered NAPEs are able to inhibit food intake, not only in normal rats and mice but also in mice lacking the enzyme that converts NAPEs into NAEs, supported the hypothesis of a role of NAPE in the regulation of feeding behavior. Indirect observations suggest that the hypophagic action of NAPEs might involve central mechanisms, although the molecular target remains unknown. The present paper reviews the role that OEA and NAPEs play in the mechanisms that control food intake, further supporting this group of phospholipids as optimal candidate for the development of novel anti-obesity treatments.

Keywords: N-acylphosphatidylethanolamines; histamine; hypothalamus; nucleus of the solitary tract; obesity; oleoylethanolamide; oxytocin; satiety and food intake

References

  1. J Med Chem. 2000 Feb 24;43(4):527-50 - PubMed
  2. Endocr J. 2012;59(5):365-74 - PubMed
  3. Neuropsychopharmacology. 2003 Jul;28(7):1311-6 - PubMed
  4. Biochim Biophys Acta. 2015 Sep;1851(9):1218-26 - PubMed
  5. Am J Physiol Regul Integr Comp Physiol. 2014 Jul 15;307(2):R167-78 - PubMed
  6. J Physiol. 2005 Apr 15;564(Pt 2):541-7 - PubMed
  7. Nature. 2001 Nov 8;414(6860):209-12 - PubMed
  8. Biochim Biophys Acta. 2006 Feb;1761(2):143-50; discussion 141-2 - PubMed
  9. Psychopharmacology (Berl). 2000 Oct;152(3):256-67 - PubMed
  10. PLoS One. 2011;6(7):e20766 - PubMed
  11. Biochim Biophys Acta. 2013 Mar;1831(3):652-62 - PubMed
  12. J Biol Chem. 2007 Jan 12;282(2):1518-28 - PubMed
  13. J Neurosci. 2010 Jun 16;30(24):8096-101 - PubMed
  14. Pharmacol Res. 2004 May;49(5):461-6 - PubMed
  15. Am J Physiol Regul Integr Comp Physiol. 2008 Jul;295(1):R45-50 - PubMed
  16. Eur J Biochem. 1996 Aug 15;240(1):53-62 - PubMed
  17. Prog Lipid Res. 1990;29(1):1-43 - PubMed
  18. J Endocrinol. 2009 May;201(2):219-30 - PubMed
  19. J Pharmacol Exp Ther. 2006 Aug;318(2):563-70 - PubMed
  20. Int J Obes (Lond). 2006 Apr;30 Suppl 1:S7-S12 - PubMed
  21. Peptides. 2011 Jun;32(6):1289-95 - PubMed
  22. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11527-32 - PubMed
  23. FASEB J. 2011 Feb;25(2):765-74 - PubMed
  24. CNS Neurol Disord Drug Targets. 2013 Feb 1;12(1):70-7 - PubMed
  25. Biochimie. 2012 Jan;94(1):75-85 - PubMed
  26. Neurosci Lett. 2015 Apr 23;593:24-8 - PubMed
  27. Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R729-37 - PubMed
  28. J Neurosci. 2011 Apr 13;31(15):5730-6 - PubMed
  29. Biochem Biophys Res Commun. 1999 Mar 16;256(2):377-80 - PubMed
  30. Am J Physiol Endocrinol Metab. 2013 Nov 15;305(10):E1266-73 - PubMed
  31. J Biol Chem. 2006 Aug 11;281(32):22815-8 - PubMed
  32. Am J Physiol. 1994 Oct;267(4 Pt 2):R1136-41 - PubMed
  33. Nutrition. 2008 Sep;24(9):843-7 - PubMed
  34. Chem Phys Lipids. 2000 Nov;108(1-2):135-50 - PubMed
  35. Am J Physiol. 1995 Nov;269(5 Pt 2):R1279-88 - PubMed
  36. Trends Endocrinol Metab. 2013 Jul;24(7):332-41 - PubMed
  37. Physiol Behav. 2014 Sep;136:55-62 - PubMed
  38. Cell Mol Life Sci. 2005 Mar;62(6):708-16 - PubMed
  39. Science. 2013 Aug 16;341(6147):800-2 - PubMed
  40. Pharmacol Biochem Behav. 2010 Nov;97(1):15-24 - PubMed
  41. Nature. 2003 Sep 4;425(6953):90-3 - PubMed
  42. J Neurochem. 1999 May;72 (5):1959-68 - PubMed
  43. Cell Metab. 2008 Oct;8(4):281-8 - PubMed
  44. Mol Biosyst. 2010 Aug;6(8):1411-8 - PubMed
  45. Biomed Res Int. 2014;2014:203425 - PubMed
  46. Biochim Biophys Acta. 2011 Oct;1811(10 ):565-77 - PubMed
  47. EXS. 2000;89:141-51 - PubMed
  48. FASEB J. 2004 Oct;18(13):1580-2 - PubMed
  49. Neuropharmacology. 2012 Jul;63(1):18-30 - PubMed
  50. Neuropharmacology. 2005 Jun;48(8):1147-53 - PubMed
  51. Biochim Biophys Acta. 1982 Aug 18;712(2):342-55 - PubMed
  52. Cell Metab. 2006 Mar;3(3):167-75 - PubMed
  53. Cell. 2008 Nov 28;135(5):813-24 - PubMed
  54. J Biol Chem. 2003 Aug 15;278(33):30429-34 - PubMed
  55. Diabetes. 2009 May;58(5):1058-66 - PubMed
  56. J Biol Chem. 2004 Feb 13;279(7):5298-305 - PubMed
  57. Neuropeptides. 1999 Oct;33(5):387-99 - PubMed
  58. Biochem Pharmacol. 2009 Sep 15;78(6):553-60 - PubMed
  59. Neuroendocrinology. 2011;94(1):1-11 - PubMed
  60. Mol Pharmacol. 2005 Jan;67(1):15-9 - PubMed
  61. Biochim Biophys Acta. 2011 Sep;1811(9):508-12 - PubMed
  62. Annu Rev Med. 2002;53:409-35 - PubMed
  63. Pharm Res. 2002 Oct;19(10):1430-8 - PubMed
  64. Regul Pept. 2011 Dec 10;172(1-3):8-15 - PubMed
  65. Endocrinology. 2011 Mar;152(3):890-902 - PubMed
  66. J Pharmacol Exp Ther. 2011 Jan;336(1):24-9 - PubMed
  67. J Pharmacol Exp Ther. 2006 Dec;319(3):1051-61 - PubMed
  68. Neuropharmacology. 2011 Mar;60(4):593-601 - PubMed
  69. J Lipid Res. 2004 Jun;45(6):1027-9 - PubMed
  70. Neurosci Biobehav Rev. 2014 Nov;47:203-24 - PubMed

Publication Types