Display options
Share it on

J Cachexia Sarcopenia Muscle. 2015 Mar;6(1):62-72. doi: 10.1002/jcsm.12006. Epub 2015 Mar 31.

Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines.

Journal of cachexia, sarcopenia and muscle

Yae Matsuo, Konstanze Gleitsmann, Norman Mangner, Sarah Werner, Tina Fischer, T Scott Bowen, Angela Kricke, Yasuharu Matsumoto, Masahiko Kurabayashi, Gerhard Schuler, Axel Linke, Volker Adams

Affiliations

  1. Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany.
  2. Department of Cardiology, Gunma University School of Medicine, Maebashi, Japan.
  3. Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.

PMID: 26136413 PMCID: PMC4435098 DOI: 10.1002/jcsm.12006

Abstract

BACKGROUND: Chronic heart failure (CHF) is commonly associated with muscle atrophy and increased inflammation. Irisin, a myokine proteolytically processed by the fibronectin type III domain containing 5 (FNDC5) gene and suggested to be Peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α activated, modulates the browning of adipocytes and is related to muscle mass. Therefore, we investigated whether skeletal muscle FNDC5 expression in CHF was reduced and if this was mediated by inflammatory cytokines and/or angiotensin II (Ang-II).

METHODS: Skeletal muscle FNDC5 mRNA/protein and PGC-1α mRNA expression (arbitrary units) were analysed in: (i) rats with ischemic cardiomyopathy; (ii) mice injected with tumour necrosis factor-α (TNF-α) (24 h); (iii) mice infused with Ang-II (4 weeks); and (iv) C2C12 myotubes exposed to recombinant cytokines or Ang-II. Circulating TNF-α, Ang-II, and irisin was measured by ELISA.

RESULTS: Ischemic cardiomyopathy reduced significantly FNDC5 protein (1.3 ± 0.2 vs. 0.5 ± 0.1) and PGC-1α mRNA expression (8.2 ± 1.5 vs. 4.7 ± 0.7). In vivo TNF-α and Ang-II reduced FNDC5 protein expression by 28% and 45%, respectively. Incubation of myotubes with TNF-α, interleukin-1ß, or TNF-α/interleukin-1ß reduced FNDC5 protein expression by 47%, 37%, or 57%, respectively, whereas Ang-II had no effect. PGC-1α was linearly correlated to FNDC5 in all conditions. In CHF, animals circulating TNF-α and Ang-II were significantly increased, whereas irisin was significantly reduced. A negative correlation between circulating TNF-α and irisin was evident.

CONCLUSION: A reduced expression of skeletal muscle FNDC5 in ischemic cardiomyopathy is likely modulated by inflammatory cytokines and/or Ang-II via the down-regulation of PGC-1α. This may act as a protective mechanism either by slowing the browning of adipocytes and preserving energy homeostasis or by regulating muscle atrophy.

© 2015 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society of Cachexia, Sarcopenia and Wasting Disorders.

Keywords: Angiotensin II; Chronics heart failure; Cytokines; FNDC5; Irisin; Skeletal muscle

References

  1. FASEB J. 2005 Mar;19(3):362-70 - PubMed
  2. Endocrine. 2013 Apr;43(2):253-65 - PubMed
  3. Nat Rev Endocrinol. 2012 Apr 03;8(8):457-65 - PubMed
  4. PLoS One. 2014 Jan 09;9(1):e85537 - PubMed
  5. J Am Coll Cardiol. 1998 May;31(6):1352-6 - PubMed
  6. Am J Med Sci. 2011 Aug;342(2):143-7 - PubMed
  7. Eur J Heart Fail. 2013 Oct;15(10):1131-7 - PubMed
  8. Front Biosci. 2008 Jan 01;13:302-11 - PubMed
  9. Cardiovasc Res. 2007 Jan 1;73(1):120-9 - PubMed
  10. Appl Physiol Nutr Metab. 2009 Jun;34(3):336-9 - PubMed
  11. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E80-9 - PubMed
  12. Clin Physiol. 2001 Nov;21(6):661-72 - PubMed
  13. Cell. 2012 Jul 20;150(2):366-76 - PubMed
  14. Circ Heart Fail. 2012 Nov;5(6):812-8 - PubMed
  15. Eur J Endocrinol. 2013 Oct 21;169(6):829-34 - PubMed
  16. J Am Soc Nephrol. 2009 Mar;20(3):604-12 - PubMed
  17. J Am Coll Cardiol. 2003 Sep 3;42(5):861-8 - PubMed
  18. Metabolism. 2012 Dec;61(12):1725-38 - PubMed
  19. J Am Coll Cardiol. 1997 Apr;29(5):1067-73 - PubMed
  20. PLoS One. 2013 Sep 11;8(9):e73680 - PubMed
  21. Nature. 2012 Jan 11;481(7382):463-8 - PubMed
  22. J Pharmacol Exp Ther. 1996 Dec;279(3):1453-61 - PubMed
  23. Int J Biochem Cell Biol. 2005 Oct;37(10):1938-47 - PubMed
  24. Circulation. 1988 Jul;78(1):186-201 - PubMed
  25. Blood. 2008 Dec 15;112(13):5095-102 - PubMed
  26. J Biol Chem. 1995 Nov 17;270(46):27489-94 - PubMed
  27. J Cell Physiol. 2013 Dec;228(12):2399-407 - PubMed
  28. PLoS One. 2013 Sep 02;8(9):e72858 - PubMed
  29. Cardiology. 2012;122(1):23-35 - PubMed
  30. Adipocyte. 2012 Oct 1;1(4):200-202 - PubMed
  31. FASEB J. 1998 Jul;12(10):871-80 - PubMed
  32. Dev Dyn. 2002 Jun;224(2):154-67 - PubMed
  33. Circulation. 2012 Jun 5;125(22):2716-27 - PubMed
  34. FASEB J. 2013 May;27(5):1981-9 - PubMed
  35. Curr Heart Fail Rep. 2012 Jun;9(2):128-32 - PubMed
  36. Circ J. 2013;77(2):293-300 - PubMed
  37. Endocrinology. 2006 Jan;147(1):552-61 - PubMed
  38. Metabolism. 2013 Aug;62(8):1052-6 - PubMed
  39. Cardiovasc Res. 2002 Apr;54(1):95-104 - PubMed
  40. Heart Fail Rev. 2010 Nov;15(6):543-62 - PubMed

Publication Types