Display options
Share it on

Evol Appl. 2015 Jul;8(6):597-620. doi: 10.1111/eva.12268. Epub 2015 May 27.

The evolutionary legacy of size-selective harvesting extends from genes to populations.

Evolutionary applications

Silva Uusi-Heikkilä, Andrew R Whiteley, Anna Kuparinen, Shuichi Matsumura, Paul A Venturelli, Christian Wolter, Jon Slate, Craig R Primmer, Thomas Meinelt, Shaun S Killen, David Bierbach, Giovanni Polverino, Arne Ludwig, Robert Arlinghaus

Affiliations

  1. Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany ; Division of Genetics and Physiology, Department of Biology, University of Turku Turku, Finland.
  2. Department of Environmental Conservation, University of Massachusetts Amherst, MA, USA.
  3. Department of Environmental Sciences, University of Helsinki Helsinki, Finland.
  4. Faculty of Applied Biological Sciences, Gifu University Gifu, Japan.
  5. Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota St Paul, MN, USA.
  6. Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany.
  7. Department of Animal and Plant Sciences, University of Sheffield, Western Bank Sheffield, UK.
  8. Division of Genetics and Physiology, Department of Biology, University of Turku Turku, Finland.
  9. Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany.
  10. Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow Glasgow, UK.
  11. Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research Berlin, Germany.
  12. Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany ; Chair of Integrative Fisheries Management, Faculty of Life Sciences, Albrecht-Daniel-Thaer Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin Berlin, Germany.

PMID: 26136825 PMCID: PMC4479515 DOI: 10.1111/eva.12268

Abstract

Size-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed. Using an experimental approach, we found that five generations of size-selective harvesting altered the life histories and behavior, but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to high positively size selective fishing pressure invested more in reproduction, reached a smaller adult body size, and were less explorative and bold. Phenotypic changes seemed subtle but were accompanied by genetic changes in functional loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced phenotypic and evolutionary change when harvesting is intensive and size selective. According to a life-history model, the observed life-history changes elevated population growth rate in harvested conditions, but slowed population recovery under a simulated moratorium. Hence, the evolutionary legacy of size-selective harvesting includes populations that are productive under exploited conditions, but selectively disadvantaged to cope with natural selection pressures that often favor large body size.

Keywords: conservation; fisheries-induced evolution; life-history evolution; personality; population dynamics

References

  1. Proc Biol Sci. 2002 Jan 7;269(1486):49-54 - PubMed
  2. Evolution. 2002 Apr;56(4):669-78 - PubMed
  3. Science. 2002 Jul 5;297(5578):94-6 - PubMed
  4. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12907-12 - PubMed
  5. Nature. 2004 Apr 29;428(6986):932-5 - PubMed
  6. Proc Biol Sci. 2004 Aug 7;271(1548):1625-31 - PubMed
  7. Ecol Lett. 2006 Feb;9(2):142-8 - PubMed
  8. Gene. 2007 Jan 15;386(1-2):98-106 - PubMed
  9. Proc Biol Sci. 2007 Apr 22;274(1613):1015-22 - PubMed
  10. J Comp Neurol. 2007 Jun 10;502(5):783-93 - PubMed
  11. Ecol Lett. 2007 May;10(5):355-63 - PubMed
  12. Mol Ecol. 2008 Jan;17(1):294-313 - PubMed
  13. Trends Ecol Evol. 2007 Dec;22(12):652-9 - PubMed
  14. Science. 2007 Nov 23;318(5854):1247-8 - PubMed
  15. Genome Biol. 2007;8(11):R251 - PubMed
  16. Evolution. 1949 Mar;3(1):51-6 - PubMed
  17. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2919-22 - PubMed
  18. Science. 2008 Apr 4;320(5872):47-50; author reply 47-50 - PubMed
  19. Trends Ecol Evol. 2008 Jun;23(6):327-37 - PubMed
  20. Trends Ecol Evol. 2008 Jul;23(7):361-8 - PubMed
  21. Trends Ecol Evol. 2008 Aug;23(8):419-21 - PubMed
  22. BMC Bioinformatics. 2008 Jul 28;9:323 - PubMed
  23. Am Nat. 2001 Apr;157(4):387-407 - PubMed
  24. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):952-4 - PubMed
  25. Proc Biol Sci. 2009 Jun 7;276(1664):2015-20 - PubMed
  26. Gen Comp Endocrinol. 2010 Feb 1;165(3):469-82 - PubMed
  27. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11657-60 - PubMed
  28. Science. 2009 Jul 31;325(5940):578-85 - PubMed
  29. Ecol Appl. 2009 Oct;19(7):1815-34 - PubMed
  30. Proc Biol Sci. 2010 May 22;277(1687):1571-9 - PubMed
  31. Zebrafish. 2010 Mar;7(1):109-17 - PubMed
  32. J Exp Biol. 2010 Apr;213(Pt 7):1143-52 - PubMed
  33. J Fish Biol. 2010 Aug;77(3):552-69 - PubMed
  34. Trends Ecol Evol. 2010 Nov;25(11):653-9 - PubMed
  35. Proc Biol Sci. 2011 Mar 7;278(1706):709-17 - PubMed
  36. PLoS One. 2011 Feb 15;6(2):e17080 - PubMed
  37. J Theor Biol. 2011 Jun 21;279(1):102-12 - PubMed
  38. Mol Ecol Resour. 2011 Mar;11 Suppl 1:184-94 - PubMed
  39. J Comp Psychol. 2011 Aug;125(3):278-85 - PubMed
  40. Mol Ecol. 2011 Sep;20(17):3555-68 - PubMed
  41. PLoS One. 2011;6(8):e23117 - PubMed
  42. Mol Ecol. 2011 Oct;20(20):4259-76 - PubMed
  43. Proc Biol Sci. 2012 Jul 7;279(1738):2571-9 - PubMed
  44. Nature. 2012 May 09;485(7399):471-7 - PubMed
  45. PLoS One. 2012;7(10):e48030 - PubMed
  46. PLoS One. 2012;7(10):e48317 - PubMed
  47. Evol Appl. 2012 Nov;5(7):657-63 - PubMed
  48. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20960-5 - PubMed
  49. Nature. 2013 Jan 31;493(7434):597-8 - PubMed
  50. Biol Lett. 2013 Jan 30;9(2):20121103 - PubMed
  51. Genome Res. 2013 Apr;23(4):727-35 - PubMed
  52. Science. 2013 Apr 19;340(6130):347-9 - PubMed
  53. Evol Appl. 2013 Jun;6(4):585-95 - PubMed
  54. Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12259-64 - PubMed
  55. J Evol Biol. 2013 Oct;26(10):2184-96 - PubMed
  56. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):12964-5 - PubMed
  57. Am Nat. 2014 Dec;184(6):714-26 - PubMed
  58. J Fish Biol. 2014 Dec;85(6):1843-67 - PubMed
  59. Evol Appl. 2014 Dec;7(10):1218-25 - PubMed
  60. Evol Appl. 2008 May;1(2):409-23 - PubMed
  61. Evol Appl. 2009 May;2(2):200-8 - PubMed
  62. Evol Appl. 2009 Aug;2(3):260-75 - PubMed
  63. Evol Appl. 2009 Aug;2(3):276-90 - PubMed
  64. Evol Appl. 2009 Aug;2(3):324-34 - PubMed
  65. Evol Appl. 2009 Aug;2(3):335-55 - PubMed
  66. Evol Appl. 2009 Aug;2(3):356-70 - PubMed
  67. Evol Appl. 2009 Aug;2(3):394-414 - PubMed
  68. Evol Appl. 2011 Sep;4(5):621-33 - PubMed
  69. Evol Appl. 2012 Feb;5(2):183-91 - PubMed
  70. J Fish Biol. 2015 Mar;86(3):1030-45 - PubMed
  71. Evol Appl. 2015 Jan;8(1):47-63 - PubMed
  72. Fish Fish (Oxf). 2014 Mar;15(1):65-96 - PubMed
  73. Oecologia. 1993 Dec;96(3):391-401 - PubMed
  74. Heredity (Edinb). 1987 Oct;59 ( Pt 2):181-97 - PubMed
  75. Dev Dyn. 1995 Jul;203(3):253-310 - PubMed

Publication Types