Display options
Share it on

Nat Commun. 2015 Jul 31;6:7914. doi: 10.1038/ncomms8914.

Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

Nature communications

Zhengyang Zhang, Petar H Lambrev, Kym L Wells, Győző Garab, Howe-Siang Tan

Affiliations

  1. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
  2. Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary.

PMID: 26228055 PMCID: PMC4532882 DOI: 10.1038/ncomms8914

Abstract

During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

References

  1. J Chem Phys. 2006 Mar 28;124(12):124506 - PubMed
  2. Acc Chem Res. 2009 Sep 15;42(9):1207-9 - PubMed
  3. Phys Chem Chem Phys. 2011 Oct 14;13(38):17093-103 - PubMed
  4. Opt Lett. 2012 Dec 15;37(24):5058-60 - PubMed
  5. J Chem Phys. 2008 Sep 28;129(12):124501 - PubMed
  6. Opt Lett. 2007 Oct 15;32(20):2966-8 - PubMed
  7. J Chem Phys. 2009 Apr 28;130(16):164510 - PubMed
  8. J Phys Chem B. 2010 Oct 28;114(42):13517-35 - PubMed
  9. J Phys Chem B. 2013 Dec 12;117(49):15369-85 - PubMed
  10. Chem Rev. 2008 Apr;108(4):1331-418 - PubMed
  11. Nature. 2005 Mar 31;434(7033):625-8 - PubMed
  12. Annu Rev Phys Chem. 2003;54:425-63 - PubMed
  13. Photosynth Res. 2013 Oct;116(2-3):251-63 - PubMed
  14. Nature. 2007 Apr 12;446(7137):782-6 - PubMed
  15. J Chem Phys. 2015 Jun 7;142(21):212423 - PubMed
  16. J Phys Chem A. 2013 Nov 14;117(45):11509-13 - PubMed
  17. J Phys Chem B. 2006 Jan 12;110(1):512-21 - PubMed
  18. Nature. 2004 Mar 18;428(6980):287-92 - PubMed
  19. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10462-7 - PubMed
  20. J Biol Chem. 2001 Sep 21;276(38):35924-33 - PubMed
  21. Chemphyschem. 2007 Aug 24;8(12):1761-5 - PubMed
  22. J Plant Physiol. 2011 Aug 15;168(12):1497-509 - PubMed
  23. Science. 2003 Jun 6;300(5625):1553-5 - PubMed
  24. Opt Express. 2008 Oct 27;16(22):17420-8 - PubMed
  25. Curr Opin Struct Biol. 2013 Aug;23(4):515-25 - PubMed
  26. J Phys Chem B. 2009 Nov 19;113(46):15352-63 - PubMed
  27. J Chem Phys. 2009 Oct 14;131(14):144510 - PubMed
  28. Phys Chem Chem Phys. 2014 Jun 21;16(23):11640-6 - PubMed
  29. J Chem Phys. 2005 Jan 15;122(3):34302 - PubMed
  30. Nature. 2010 Feb 4;463(7281):644-7 - PubMed
  31. J Phys Chem B. 2005 May 26;109(20):10493-504 - PubMed
  32. Acc Chem Res. 2009 Sep 15;42(9):1412-22 - PubMed
  33. J Chem Phys. 2013 Oct 14;139(14):144205 - PubMed
  34. Nat Commun. 2013;4:1390 - PubMed
  35. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14197-202 - PubMed
  36. Photosynth Res. 2006 Mar;87(3):267-79 - PubMed

Publication Types