Display options
Share it on

Sci Rep. 2015 Jul 14;5:12013. doi: 10.1038/srep12013.

Micro-concave waveguide antenna for high photon extraction from nitrogen vacancy centers in nanodiamond.

Scientific reports

Ranjith Rajasekharan, Günter Kewes, Amir Djalalian-Assl, Kumaravelu Ganesan, Snjezana Tomljenovic-Hanic, Jeffrey C McCallum, Ann Roberts, Oliver Benson, Steven Prawer

Affiliations

  1. Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria 3010 Australia.
  2. Nano-Optics, Institute of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany.
  3. School of Physics, The University of Melbourne, Victoria 3010, Australia.

PMID: 26169682 PMCID: PMC4500948 DOI: 10.1038/srep12013

Abstract

The negatively charged nitrogen-vacancy colour center (NV(-) center) in nanodiamond is an excellent single photon source due to its stable photon generation in ambient conditions, optically addressable nuclear spin state, high quantum yield and its availability in nanometer sized crystals. In order to make practical devices using nanodiamond, highly efficient and directional emission of single photons in well-defined modes, either collimated into free space or waveguides are essential. This is a Herculean task as the photoluminescence of the NV centers is associated with two orthogonal dipoles arranged in a plane perpendicular to the NV defect symmetry axis. Here, we report on a micro-concave waveguide antenna design, which can effectively direct single photons from any emitter into either free space or into waveguides in a narrow cone angle with more than 80% collection efficiency irrespective of the dipole orientation. The device also enhances the spontaneous emission rate which further increases the number of photons available for collection. The waveguide antenna has potential applications in quantum cryptography, quantum computation, spectroscopy and metrology.

References

  1. Opt Lett. 2012 Oct 15;37(20):4206-8 - PubMed
  2. Biomed Opt Express. 2014 Jan 27;5(2):596-608 - PubMed
  3. Nano Lett. 2010 May 12;10(5):1936-40 - PubMed
  4. Nano Lett. 2006 Sep;6(9):2075-9 - PubMed
  5. Phys Rev Lett. 2010 Oct 29;105(18):180502 - PubMed
  6. Opt Lett. 2014 Aug 15;39(16):4639-42 - PubMed
  7. Nano Lett. 2009 Apr;9(4):1694-8 - PubMed
  8. Opt Express. 2009 Jul 6;17(14):11287-93 - PubMed
  9. Opt Lett. 2009 Apr 1;34(7):1108-10 - PubMed
  10. Opt Lett. 2003 Oct 1;28(19):1736-8 - PubMed
  11. Rev Sci Instrum. 2011 Jul;82(7):073709 - PubMed
  12. Opt Express. 2009 Apr 13;17(8):6465-75 - PubMed
  13. Opt Express. 2011 Mar 14;19(6):5268-76 - PubMed
  14. Opt Lett. 2011 Sep 15;36(18):3545-7 - PubMed
  15. Nat Nanotechnol. 2010 Mar;5(3):195-9 - PubMed
  16. Sci Rep. 2014 Jan 10;4:3634 - PubMed
  17. Opt Lett. 2014 Feb 1;39(3):462-5 - PubMed
  18. Nano Lett. 2011 Jan 12;11(1):198-202 - PubMed
  19. Phys Rev Lett. 2011 Mar 4;106(9):096801 - PubMed
  20. Opt Express. 2008 Nov 24;16(24):19512-9 - PubMed
  21. Opt Express. 2009 May 11;17(10):8081-97 - PubMed
  22. Sci Rep. 2013;3:1577 - PubMed
  23. Nat Mater. 2009 May;8(5):383-7 - PubMed
  24. Sci Rep. 2014 Sep 22;4:6435 - PubMed

Publication Types