Display options
Share it on

Oncoimmunology. 2015 Jan 22;4(4):e1001204. doi: 10.1080/2162402X.2014.1001204. eCollection 2015 Apr.

NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization.

Oncoimmunology

Fusanori Yotsumoto, Weon-Kyoo You, Pilar Cejudo-Martin, Karolina Kucharova, Kenji Sakimura, William B Stallcup

Affiliations

  1. Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA ; Department of Biochemistry; Faculty of Medicine ; Fukuoka University , Fukuoka, Japan.
  2. Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA ; Biologics Business; Research and Development Center ; Hanwha Chemical ; Daejeon, South Korea.
  3. Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA.
  4. Department of Cellular Neurobiology; Brain Research Institute ; Niigata University , Niigata, Japan.

PMID: 26137396 PMCID: PMC4485789 DOI: 10.1080/2162402X.2014.1001204

Abstract

Early stage growth of intracranial B16F10 tumors is reduced by 87% in myeloid-specific NG2 null (Mac-NG2ko) mice and by 77% in pericyte-specific NG2 null (PC-NG2ko) mice, demonstrating the importance of the NG2 proteoglycan in each of these stromal compartments. In both genotypes, loss of pericyte-endothelial cell interaction results in numerous structural defects in tumor blood vessels, including decreased formation of endothelial cell junctions and decreased assembly of the vascular basal lamina. All vascular deficits are larger in Mac-NG2ko mice than in PC-NG2ko mice, correlating with the greater decrease in pericyte-endothelial cell interaction in Mac-NG2ko animals. Accordingly, tumor vessels in Mac-NG2ko mice have a smaller diameter, lower degree of patency, and higher degree of leakiness than tumor vessels in PC-NG2ko mice, leading to less efficient tumor blood flow and to increased intratumoral hypoxia. While reduced pericyte interaction with endothelial cells in PC-NG2ko mice is caused by loss of NG2-dependent pericyte activation of β1 integrin signaling in endothelial cells, reduced pericyte-endothelial cell interaction in Mac-NG2ko mice is due to a 90% reduction in NG2-dependent macrophage recruitment to tumors. The absence of a macrophage-derived signal(s) in Mac-NG2ko mice results in the loss of pericyte ability to associate with endothelial cells, possibly due to reduced expression of N-cadherin by both pericytes and endothelial cells.

Keywords: NG2 proteoglycan; macrophage recruitment; pericyte-endothelial cell interaction; tumor microenvironment; tumor vascularization

References

  1. J Neuroinflammation. 2011 Nov 13;8:158 - PubMed
  2. Mol Biol Cell. 2004 Aug;15(8):3580-90 - PubMed
  3. Oncogene. 2008 Sep 4;27(39):5182-94 - PubMed
  4. Cancer Res. 2008 Oct 1;68(19):8066-75 - PubMed
  5. Circ Res. 2005 Sep 16;97(6):512-23 - PubMed
  6. Biochim Biophys Acta. 2009 Aug;1796(1):5-10 - PubMed
  7. J Clin Invest. 2000 Dec;106(12):1457-66 - PubMed
  8. Science. 2002 May 10;296(5570):1046-9 - PubMed
  9. Breast Cancer Res. 2012 Apr 24;14 (2):R67 - PubMed
  10. Semin Cancer Biol. 2002 Apr;12(2):97-104 - PubMed
  11. Glia. 1995 Nov;15(3):339-47 - PubMed
  12. PLoS One. 2012;7(1):e30637 - PubMed
  13. Cancer Res. 2006 Feb 15;66(4):2146-52 - PubMed
  14. PLoS One. 2011 Jan 10;6(1):e15846 - PubMed
  15. Immunity. 2014 Jul 17;41(1):49-61 - PubMed
  16. Dev Biol. 2010 Aug 15;344(2):1035-46 - PubMed
  17. Nat Immunol. 2013 Jan;14(1):41-51 - PubMed
  18. J Cell Biol. 1997 Jun 30;137(7):1663-81 - PubMed
  19. Cancer Cell. 2005 Sep;8(3):211-26 - PubMed
  20. Neuro Oncol. 2011 Aug;13(8):830-45 - PubMed
  21. J Cell Physiol. 1998 Nov;177(2):299-312 - PubMed
  22. J Cell Mol Med. 2009 Sep;13(9A):2822-33 - PubMed
  23. J Cell Biol. 2007 Jul 2;178(1):155-65 - PubMed
  24. Biochim Biophys Acta. 2009 Aug;1796(1):11-8 - PubMed
  25. J Mol Cell Biol. 2013 Jun;5(3):176-93 - PubMed
  26. Nature. 2008 Dec 11;456(7223):814-8 - PubMed
  27. J Cell Biol. 2000 Jun 12;149(6):1263-74 - PubMed
  28. Dev Dyn. 2000 Jul;218(3):472-9 - PubMed
  29. Angiogenesis. 2014 Jan;17(1):61-76 - PubMed
  30. Cell. 2006 Jan 13;124(1):161-73 - PubMed
  31. Development. 2008 Feb;135(3):523-32 - PubMed
  32. Cell Adh Migr. 2008 Jul-Sep;2(3):192-201 - PubMed
  33. FASEB J. 2003 Aug;17(11):1520-2 - PubMed
  34. Transgenic Res. 1999 Aug;8(4):265-77 - PubMed
  35. Nat Rev Cancer. 2003 Jun;3(6):401-10 - PubMed
  36. Am J Pathol. 2010 Apr;176(4):1564-76 - PubMed
  37. J Natl Cancer Inst. 2010 Oct 6;102(19):1496-512 - PubMed
  38. Cancer Lett. 2014 Oct 1;352(2):160-8 - PubMed
  39. Neuropathology. 2012 Jun;32(3):252-60 - PubMed
  40. Pigment Cell Melanoma Res. 2011 Dec;24(6):1148-57 - PubMed
  41. Am J Pathol. 2003 Nov;163(5):2113-26 - PubMed
  42. Am J Pathol. 2012 Mar;180(3):1145-58 - PubMed
  43. Blood. 1996 Feb 1;87(3):1123-33 - PubMed
  44. Cell. 2010 Apr 2;141(1):39-51 - PubMed
  45. Cancer Res. 2006 Dec 1;66(23):11238-46 - PubMed
  46. PLoS One. 2011;6(7):e23062 - PubMed
  47. Dev Cell. 2011 Mar 15;20(3):291-302 - PubMed
  48. Exp Hematol. 2007 Aug;35(8):1256-65 - PubMed
  49. Oncogene. 2007 Apr 19;26(18):2563-73 - PubMed
  50. Brain Pathol. 2009 Jan;19(1):144-9 - PubMed
  51. BMC Cancer. 2012 Jan 24;12:35 - PubMed
  52. J Cell Biol. 2005 Apr 11;169(1):29-34 - PubMed
  53. Cancer Cell. 2012 Mar 20;21(3):309-22 - PubMed

Publication Types

Grant support