Display options
Share it on

Front Microbiol. 2015 Jun 12;6:558. doi: 10.3389/fmicb.2015.00558. eCollection 2015.

Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription.

Frontiers in microbiology

Beth M Carpenter, Abby L West, Hanan Gancz, Stephanie L Servetas, Oscar Q Pich, Jeremy J Gilbreath, Daniel R Hallinger, Mark H Forsyth, D Scott Merrell, Sarah L J Michel, Contreras, Dehning, Loidolt, Zierenberg

Affiliations

  1. Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA.
  2. Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA.
  3. Department of Biology, The College of William and Mary Williamsburg, VA, USA.

PMID: 26124751 PMCID: PMC4464171 DOI: 10.3389/fmicb.2015.00558

Abstract

Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA ) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct "cross-talk" between HpArsRS and HpNikR at neutral pH has been demonstrated.

Keywords: Helicobacter; arsRS; nikR; pH; pylori; regulation; urease

References

  1. J Bacteriol. 2006 May;188(10):3449-62 - PubMed
  2. Infect Immun. 2003 May;71(5):2643-55 - PubMed
  3. Appl Environ Microbiol. 2007 Dec;73(23):7506-14 - PubMed
  4. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7235-40 - PubMed
  5. Metallomics. 2009;1(3):207-21 - PubMed
  6. Biometals. 2010 Feb;23(1):145-59 - PubMed
  7. J Am Chem Soc. 2010 Oct 20;132(41):14447-56 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5633-8 - PubMed
  9. J Bacteriol. 1997 Dec;179(23):7410-9 - PubMed
  10. Nucleic Acids Res. 2010 May;38(9):3106-18 - PubMed
  11. J Mol Biol. 2008 Nov 28;383(5):1129-43 - PubMed
  12. J Infect Dis. 1990 Apr;161(4):626-33 - PubMed
  13. Biochemistry. 2009 Mar 24;48(11):2486-96 - PubMed
  14. J Bacteriol. 2009 Jun;191(11):3717-25 - PubMed
  15. Curr Opin Struct Biol. 2011 Jun;21(3):342-7 - PubMed
  16. J Bacteriol. 2009 Jan;191(2):449-60 - PubMed
  17. Mol Microbiol. 2003 Aug;49(4):947-63 - PubMed
  18. J Bacteriol. 2006 Feb;188(4):1245-50 - PubMed
  19. Annu Rev Biochem. 2010;79:233-69 - PubMed
  20. Trends Microbiol. 2004 Nov;12(11):489-94 - PubMed
  21. J Bacteriol. 2009 Jan;191(1):447-8 - PubMed
  22. J Bacteriol. 2012 Oct;194(20):5545-51 - PubMed
  23. J Inorg Biochem. 2006 May;100(5-6):1005-14 - PubMed
  24. PLoS One. 2009 Sep 07;4(9):e6930 - PubMed
  25. J Bacteriol. 2010 Aug;192(15):3977-82 - PubMed
  26. J Biol Chem. 2006 Apr 14;281(15):10049-55 - PubMed
  27. J Biol Chem. 2007 Jul 13;282(28):20365-75 - PubMed
  28. Chem Biol. 2002 Oct;9(10):1141-8 - PubMed
  29. J Bacteriol. 2011 Mar;193(5):1131-41 - PubMed
  30. Biometals. 2007 Jun;20(3-4):655-64 - PubMed
  31. Infect Immun. 1997 May;65(5):1949-52 - PubMed
  32. J Bacteriol. 2007 Mar;189(6):2426-34 - PubMed
  33. J Biol Chem. 1994 Dec 16;269(50):31567-72 - PubMed
  34. Nat Rev Microbiol. 2007 Sep;5(9):710-20 - PubMed
  35. Infect Immun. 2002 Jun;70(6):2846-52 - PubMed
  36. Dalton Trans. 2012 Jul 14;41(26):7946-51 - PubMed
  37. J Mol Biol. 2005 May 6;348(3):597-607 - PubMed
  38. J Bacteriol. 2005 Nov;187(22):7703-15 - PubMed
  39. Clin Microbiol Rev. 1997 Oct;10(4):720-41 - PubMed
  40. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5791-5 - PubMed
  41. Protein Sci. 2014 Apr;23(4):454-63 - PubMed
  42. J Biol Chem. 2000 Jun 30;275(26):19735-41 - PubMed
  43. Nucleic Acids Res. 2011 Sep 1;39(17):7564-75 - PubMed
  44. Protein Sci. 1999 Nov;8(11):2494-500 - PubMed
  45. Microbiology. 2010 Feb;156(Pt 2):570-8 - PubMed
  46. Infect Immun. 2004 Feb;72(2):766-73 - PubMed
  47. Curr Opin Chem Biol. 2006 Apr;10(2):123-30 - PubMed
  48. Infect Immun. 2006 Dec;74(12):6821-8 - PubMed
  49. J Bacteriol. 2000 Apr;182(8):2068-76 - PubMed
  50. J Bacteriol. 2012 Dec;194(23 ):6490-7 - PubMed
  51. Infect Immun. 2003 Oct;71(10):5921-39 - PubMed
  52. Dalton Trans. 2011 Aug 21;40(31):7831-3 - PubMed
  53. Clin Microbiol Rev. 2006 Jul;19(3):449-90 - PubMed
  54. Infect Immun. 2005 Nov;73(11):7252-8 - PubMed
  55. Biochemistry. 2007 Mar 6;46(9):2520-9 - PubMed
  56. Lancet. 1984 Jun 16;1(8390):1311-5 - PubMed
  57. J Bacteriol. 2002 Jan;184(2):350-62 - PubMed
  58. Helicobacter. 2001 Mar;6(1):15-23 - PubMed
  59. J Biol Chem. 2009 Mar 6;284(10 ):6536-45 - PubMed
  60. Mol Microbiol. 2001 Dec;42(5):1297-309 - PubMed
  61. Biochemistry. 2009 Jan 27;48(3):527-36 - PubMed
  62. Infect Immun. 2005 Oct;73(10 ):6437-45 - PubMed
  63. Methods Enzymol. 2007;423:514-30 - PubMed
  64. J Biotechnol. 2006 Oct 20;126(1):52-60 - PubMed
  65. J Membr Biol. 2006;212(2):71-82 - PubMed
  66. Metallomics. 2015 Apr;7(4):662-73 - PubMed
  67. J Bacteriol. 1996 Apr;178(8):2216-23 - PubMed
  68. J Bacteriol. 2002 Sep;184(17):4733-8 - PubMed
  69. J Bacteriol. 2010 Apr;192(8):2034-43 - PubMed
  70. J Bacteriol. 2006 Mar;188(5):1750-61 - PubMed
  71. J Bacteriol. 2005 May;187(9):3100-9 - PubMed
  72. Annu Rev Med. 1992;43:135-45 - PubMed
  73. Infect Immun. 2006 Dec;74(12):6811-20 - PubMed
  74. Expert Opin Ther Targets. 2003 Dec;7(6):725-35 - PubMed
  75. Antimicrob Agents Chemother. 1994 Aug;38(8):1773-9 - PubMed
  76. J Biol Chem. 2011 May 6;286(18):15728-37 - PubMed
  77. Helicobacter. 2002;7 Suppl 1:37-42 - PubMed
  78. Microbiology. 2008 Aug;154(Pt 8):2231-40 - PubMed
  79. Physiology (Bethesda). 2005 Dec;20:429-38 - PubMed

Publication Types