Display options
Share it on

Beilstein J Nanotechnol. 2015 May 11;6:1145-57. doi: 10.3762/bjnano.6.116. eCollection 2015.

Electrical characterization of single molecule and Langmuir-Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative.

Beilstein journal of nanotechnology

Henrry Marcelo Osorio, Santiago Martín, María Carmen López, Santiago Marqués-González, Simon J Higgins, Richard J Nichols, Paul J Low, Pilar Cea

Affiliations

  1. Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain ; Instituto de Nanociencia de Aragón (INA), Edificio I+D, Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, 50017 Zaragoza, Spain ; Laboratorio de Microscopias Avanzadas (LMA) C/Mariano Esquilor s/n, Campus Rio Ebro, 50018 Zaragoza, Spain.
  2. Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain ; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
  3. Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain ; Instituto de Nanociencia de Aragón (INA), Edificio I+D, Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, 50017 Zaragoza, Spain.
  4. Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdom.
  5. Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.
  6. Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdom ; School of Chemistry and Biochemistry, University of Western Australia, Crawley 6009, WA, Australia.

PMID: 26171291 PMCID: PMC4464395 DOI: 10.3762/bjnano.6.116

Abstract

Monolayer Langmuir-Blodgett (LB) films of 1,4-bis(pyridin-4-ylethynyl)benzene (1) together with the "STM touch-to-contact" method have been used to study the nature of metal-monolayer-metal junctions in which the pyridyl group provides the contact at both molecule-surface interfaces. Surface pressure vs area per molecule isotherms and Brewster angle microscopy images indicate that 1 forms true monolayers at the air-water interface. LB films of 1 were fabricated by deposition of the Langmuir films onto solid supports resulting in monolayers with surface coverage of 0.98 × 10(-9) mol·cm(-2). The morphology of the LB films that incorporate compound 1 was studied using atomic force microscopy (AFM). AFM images indicate the formation of homogeneous, monomolecular films at a surface pressure of transference of 16 mN·m(-1). The UV-vis spectra of the Langmuir and LB films reveal that 1 forms two dimensional J-aggregates. Scanning tunneling microscopy (STM), in particular the "STM touch-to-contact" method, was used to determine the electrical properties of LB films of 1. From these STM studies symmetrical I-V curves were obtained. A junction conductance of 5.17 × 10(-5) G 0 results from the analysis of the pseudolinear (ohmic) region of the I-V curves. This value is higher than that of the conductance values of LB films of phenylene-ethynylene derivatives contacted by amines, thiols, carboxylate, trimethylsilylethynyl or acetylide groups. In addition, the single molecule I-V curve of 1 determined using the I(s) method is in good agreement with the I-V curve obtained for the LB film, and both curves fit well with the Simmons model. Together, these results not only indicate that the mechanism of transport through these metal-molecule-metal junctions is non-resonant tunneling, but that lateral interactions between molecules within the LB film do not strongly influence the molecule conductance. The results presented here complement earlier studies of single molecule conductance of 1 using STM-BJ methods, and support the growing evidence that the pyridyl group is an efficient and effective anchoring group in sandwiched metal-monolayer-metal junctions prepared under a number of different conditions.

Keywords: Langmuir–Blodgett films; STM touch-to-contact method; molecular electronics

References

  1. J Phys Condens Matter. 2011 Jan 12;23(1):013001 - PubMed
  2. Phys Rev Lett. 2002 Apr 29;88(17):176804 - PubMed
  3. J Am Chem Soc. 2008 Jul 16;130(28):9013-8 - PubMed
  4. Phys Rev Lett. 1993 Jan 11;70(2):218-221 - PubMed
  5. J Am Chem Soc. 2006 Jun 21;128(24):7746-7 - PubMed
  6. Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3152-5 - PubMed
  7. Nat Nanotechnol. 2013 Apr;8(4):282-7 - PubMed
  8. J Am Chem Soc. 2009 Apr 29;131(16):5980-5 - PubMed
  9. Nano Lett. 2014 Oct 8;14(10):5672-6 - PubMed
  10. Opt Lett. 2002 May 1;27(9):686-8 - PubMed
  11. Nature. 2002 Oct 31;419(6910):906-9 - PubMed
  12. Nat Mater. 2006 Dec;5(12):995-1002 - PubMed
  13. Ultramicroscopy. 2003 Oct-Nov;97(1-4):19-26 - PubMed
  14. Langmuir. 2011 Apr 5;27(7):3600-10 - PubMed
  15. J Am Chem Soc. 2007 Dec 26;129(51):15768-9 - PubMed
  16. J Phys Chem B. 2006 Jan 19;110(2):963-70 - PubMed
  17. Nature. 2012 Aug 16;488(7411):357-60 - PubMed
  18. Chem Soc Rev. 2011 Jun;40(6):3336-55 - PubMed
  19. Phys Rev Lett. 2008 Jul 25;101(4):046801 - PubMed
  20. Small. 2010 Jul 19;6(14):1529-35 - PubMed
  21. Chem Commun (Camb). 2006 Aug 14;(30):3202-4 - PubMed
  22. Chem Rec. 2012 Feb;12(1):149-63 - PubMed
  23. Phys Chem Chem Phys. 2008 Sep 14;10(34):5264-75 - PubMed
  24. J Am Chem Soc. 2011 Mar 9;133(9):3014-22 - PubMed
  25. Nat Nanotechnol. 2013 Jun;8(6):385-9 - PubMed
  26. Nat Nanotechnol. 2011 Jul 31;6(8):517-23 - PubMed
  27. ACS Nano. 2009 Aug 25;3(8):2073-80 - PubMed
  28. ACS Nano. 2013 Jul 23;7(7):6170-80 - PubMed
  29. Science. 2007 Mar 16;315(5818):1568-71 - PubMed
  30. Langmuir. 2010 Feb 2;26(3):1570-3 - PubMed
  31. Science. 2001 Oct 19;294(5542):571-4 - PubMed
  32. Nanoscale. 2013 May 7;5(9):3654-9 - PubMed
  33. J Am Chem Soc. 2009 Nov 4;131(43):15647-54 - PubMed
  34. Science. 2003 May 30;300(5624):1413-6 - PubMed
  35. Nat Nanotechnol. 2010 Aug;5(8):618-24 - PubMed
  36. J Phys Chem B. 2006 Feb 16;110(6):2462-6 - PubMed
  37. J Am Chem Soc. 2003 Dec 17;125(50):15294-5 - PubMed
  38. Phys Rev Lett. 2008 Sep 12;101(11):116602 - PubMed
  39. Chemistry. 2003 Jun 6;9(11):2574-81 - PubMed
  40. Nano Lett. 2006 Jul;6(7):1518-21 - PubMed
  41. J Am Chem Soc. 2006 Apr 19;128(15):4970-1 - PubMed
  42. Nano Lett. 2009 Oct;9(10):3406-12 - PubMed
  43. J Am Chem Soc. 2010 Jun 16;132(23):7946-56 - PubMed
  44. J Am Chem Soc. 2010 Jul 7;132(26):9157-64 - PubMed
  45. Science. 1999 Jul 16;285(5426):391-4 - PubMed
  46. J Am Chem Soc. 2010 Jan 20;132(2):756-64 - PubMed
  47. ACS Appl Mater Interfaces. 2010 Dec;2(12):3693-701 - PubMed
  48. Langmuir. 2008 Sep 16;24(18):10196-203 - PubMed
  49. J Am Chem Soc. 2012 Mar 14;134(10):4541-4 - PubMed
  50. J Phys Chem B. 2007 Jun 28;111(25):7201-9 - PubMed
  51. Chem Soc Rev. 2013 Jul 7;42(13):5642-60 - PubMed
  52. Chemistry. 2010 Dec 3;16(45):13398-405 - PubMed
  53. Nat Nanotechnol. 2014 Nov;9(11):881-5 - PubMed
  54. Nat Nanotechnol. 2013 Jun;8(6):377 - PubMed
  55. Nat Chem. 2012 May 22;4(6):443-55 - PubMed
  56. Science. 2009 Feb 27;323(5918):1193-7 - PubMed
  57. J Am Chem Soc. 2011 Apr 20;133(15):5921-30 - PubMed
  58. Science. 2000 Aug 18;289(5482):1172-5 - PubMed
  59. J Am Chem Soc. 2006 Dec 13;128(49):15874-81 - PubMed
  60. J Am Chem Soc. 2002 Sep 25;124(38):11268-9 - PubMed
  61. Chemistry. 2013 Apr 22;19(17):5352-63 - PubMed
  62. J Am Chem Soc. 2010 May 19;132(19):6817-21 - PubMed
  63. Science. 2003 Aug 29;301(5637):1221-3 - PubMed
  64. Nat Nanotechnol. 2013 Jun;8(6):399-410 - PubMed
  65. Small. 2008 Jan;4(1):100-4 - PubMed
  66. Nat Mater. 2008 Mar;7(3):179-86 - PubMed
  67. J Am Chem Soc. 2013 Aug 21;135(33):12228-40 - PubMed
  68. J Am Chem Soc. 2008 Jul 9;130(27):8582-3 - PubMed
  69. J Am Chem Soc. 2011 Jan 19;133(2):184-7 - PubMed
  70. Nat Nanotechnol. 2006 Dec;1(3):173-81 - PubMed
  71. Faraday Discuss. 2006;131:253-64; discussion 307-24 - PubMed
  72. J Am Chem Soc. 2012 Feb 1;134(4):2292-304 - PubMed
  73. Phys Rev Lett. 2009 Mar 27;102(12):126803 - PubMed
  74. J Phys Chem B. 2005 Nov 3;109(43):20343-9 - PubMed

Publication Types