Display options
Share it on

J Food Sci Technol. 2015 Jul;52(7):4146-55. doi: 10.1007/s13197-014-1441-4. Epub 2014 Jul 08.

The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage.

Journal of food science and technology

Oana Lelia Pop, Thorsten Brandau, Jens Schwinn, Dan Cristian Vodnar, Carmen Socaciu

Affiliations

  1. Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur str., Cluj-Napoca, 400372 Romania.
  2. Brace GmbH, Am Mittelberg 5, Karlstein am Main, D-63791 Germany.

PMID: 26139879 PMCID: PMC4486539 DOI: 10.1007/s13197-014-1441-4

Abstract

Seven different types of natural polymers namely hydroxypropyl methylcellulose (HPMC), sodium-carboxymethyl cellulose (Na-CMC), microcrystalline cellulose (MCC), starch BR-07, starch BR-08, dextrin and pullulan were used in order to develop the optimal formula for the entrapment of Bifidobacterium lactis 300B in Ca-alginate based granules. Laminar flow drip casting with Brace-Encapsulator was used in order to prepare the granules. The results showed that alginate/pullulan and alginate/HPMC formulation provide high protection for the bacterial strain used for encapsulation. These two formulations were further used to obtain freeze dried granules, for which the viability in time and at different temperatures was tested. The final results showed a higher viability than the level of the therapeutic minimum (>10(7) CFU/g) after 15 days of storage. Other parameters like entrapment efficiency, production rate, sphericity, flowability were also discussed.

Keywords: Bifidobacteria; Bioencapsulation; Biomaterials; Granules Production; Viability

References

  1. Biomacromolecules. 2013 Sep 9;14(9):3214-22 - PubMed
  2. Biomacromolecules. 2005 Mar-Apr;6(2):1031-40 - PubMed
  3. Curr Pharm Biotechnol. 2000 Nov;1(3):283-302 - PubMed
  4. Carbohydr Polym. 2008 Sep 5;73(4):515-31 - PubMed
  5. J Microencapsul. 2011;28(4):323-35 - PubMed
  6. Int J Food Microbiol. 2010 Jan 1;136(3):364-7 - PubMed
  7. Int J Food Microbiol. 2005 Jul 15;102(2):231-7 - PubMed
  8. Drug Dev Ind Pharm. 2003 Jul;29(6):713-24 - PubMed
  9. J Microbiol Methods. 2004 Jan;56(1):27-35 - PubMed
  10. Int J Food Microbiol. 2011 Sep 1;149(1):50-7 - PubMed
  11. Adv Appl Microbiol. 2003;53:129-76 - PubMed
  12. Am J Clin Nutr. 2001 Feb;73(2 Suppl):476S-483S - PubMed
  13. Int J Food Microbiol. 2000 Dec 5;62(1-2):47-55 - PubMed
  14. Int J Food Microbiol. 2007 Jun 10;117(1):76-84 - PubMed
  15. Pharm Res. 1999 Feb;16(2):249-54 - PubMed
  16. Int J Pharm. 2009 Mar 31;370(1-2):54-60 - PubMed
  17. Appl Microbiol Biotechnol. 2003 Oct;62(5-6):468-73 - PubMed
  18. J Appl Microbiol. 2005;99(3):493-501 - PubMed
  19. Int J Pharm. 2002 Aug 21;242(1-2):179-84 - PubMed
  20. Eur J Pharm Biopharm. 2012 Apr;80(3):471-7 - PubMed
  21. J Microencapsul. 2010 May;27(3):187-97 - PubMed
  22. Int J Pharm. 2000 Dec 4;210(1-2):51-9 - PubMed
  23. Int J Food Microbiol. 2014 Mar 17;174:110-2 - PubMed
  24. Eur J Pharm Sci. 2010 Jul 11;40(4):359-66 - PubMed
  25. Int J Pharm. 2005 Feb 16;290(1-2):45-54 - PubMed
  26. J Microencapsul. 2005 Sep;22(6):603-19 - PubMed

Publication Types