Display options
Share it on

Ecol Evol. 2015 May;5(9):1802-17. doi: 10.1002/ece3.1435. Epub 2015 Apr 03.

Intervarietal and intravarietal genetic structure in Douglas-fir: nuclear SSRs bring novel insights into past population demographic processes, phylogeography, and intervarietal hybridization.

Ecology and evolution

Marcela van Loo, Wolfgang Hintsteiner, Elisabeth Pötzelsberger, Silvio Schüler, Hubert Hasenauer

Affiliations

  1. Institute of Silviculture, University of Natural Resources and Life Sciences Peter Jordan Straße 82, 1190, Wien, Austria.
  2. Institute of Silviculture, University of Natural Resources and Life Sciences Peter Jordan Straße 82, 1190, Wien, Austria ; alpS-GmbH Grabenweg 68, 6020, Innsbruck, Austria.
  3. Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscapes Hauptstr. 7, 1140, Vienna, Austria.

PMID: 26140197 PMCID: PMC4485962 DOI: 10.1002/ece3.1435

Abstract

Douglas-fir (Pseudotsuga menziesii) is one of numerous wide-range forest tree species represented by subspecies/varieties, which hybridize in contact zones. This study examined the genetic structure of this North American conifer and its two hybridizing varieties, coastal and Rocky Mountain, at intervarietal and intravarietal level. The genetic structure was subsequently associated with the Pleistocene refugial history, postglacial migration and intervarietal hybridization/introgression. Thirty-eight populations from the USA and Canada were genotyped for 13 nuclear SSRs and analyzed with simulations and traditional population genetic structuring methods. Eight genetic clusters were identified. The coastal clusters embodied five refugial populations originating from five distinct refugia. Four coastal refugial populations, three from California and one from western Canada, diverged during the Pleistocene (56.9-40.1 ka). The three Rocky Mountain clusters reflected distinct refugial populations of three glacial refugia. For Canada, ice covered during the Last Glacial Maximum, we present the following three findings. (1) One refugial population of each variety was revealed in the north of the distribution range. Additional research including paleodata is required to support and determine whether both northern populations originated from cryptic refugia situated south or north of the ice-covered area. (2) An interplay between intravarietal gene flow of different refugial populations and intervarietal gene flow by hybridization and introgression was identified. (3) The Canadian hybrid zone displayed predominantly introgressants of the Rocky Mountain into the coastal variety. This study provides new insights into the complex Quaternary dynamics of this conifer essential for understanding its evolution (outside and inside the native range), adaptation to future climates and for forest management.

Keywords: Douglas-fir; genetic diversity; genetic structure; intervarietal hybridization; refugia; varieties

References

  1. New Phytol. 2011 Mar;189(4):1185-99 - PubMed
  2. Genetics. 2003 Aug;164(4):1567-87 - PubMed
  3. Bioinformatics. 2007 Jul 15;23(14):1801-6 - PubMed
  4. Genetics. 2000 Jun;155(2):945-59 - PubMed
  5. Ecol Evol. 2012 Aug;2(8):1853-66 - PubMed
  6. Mol Ecol. 2009 Mar;18(6):1207-24 - PubMed
  7. J Hered. 2011 Mar-Apr;102(2):207-16 - PubMed
  8. Am J Bot. 2009 Dec;96(12):2224-33 - PubMed
  9. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12447-50 - PubMed
  10. Am J Bot. 2013 Aug;100(8):1651-62 - PubMed
  11. Theor Appl Genet. 2004 Mar;108(5):873-80 - PubMed
  12. Mol Ecol. 2008 May;17(10):2463-75 - PubMed
  13. Int J Mol Sci. 2013 Nov 14;14(11):22499-528 - PubMed
  14. Evol Appl. 2012 Dec;5(8):879-91 - PubMed
  15. Ecol Evol. 2013 Feb;3(2):437-49 - PubMed
  16. Bioinformatics. 2012 Oct 1;28(19):2537-9 - PubMed
  17. Mol Ecol Resour. 2009 Sep;9(5):1322-32 - PubMed
  18. Conserv Biol. 2007 Apr;21(2):297-302 - PubMed
  19. Genetics. 2010 Oct;186(2):699-712 - PubMed
  20. Mol Ecol. 2008 Sep;17(18):4015-26 - PubMed
  21. Mol Ecol Resour. 2010 Mar;10(2):378-84 - PubMed
  22. Mol Ecol. 2013 Oct;22(19):4958-71 - PubMed
  23. Mol Ecol. 2010 May;19(9):1877-97 - PubMed
  24. Mol Ecol. 2005 Jul;14(8):2611-20 - PubMed
  25. Mol Ecol Notes. 2007 Jul 1;7(4):574-578 - PubMed
  26. Mol Ecol. 2002 Dec;11(12):2623-35 - PubMed
  27. Mol Ecol. 2013 Apr;22(7):1869-83 - PubMed
  28. Mol Ecol Resour. 2008 Jan;8(1):103-6 - PubMed
  29. Mol Ecol. 2010 Dec;19(23):5265-80 - PubMed
  30. Bioinformatics. 2014 Apr 15;30(8):1187-1189 - PubMed
  31. Genetics. 2009 Aug;182(4):1289-302 - PubMed
  32. Mol Ecol Resour. 2011 Jan;11(1):5-18 - PubMed
  33. Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):197-207 - PubMed
  34. Bioinformatics. 2008 Nov 1;24(21):2498-504 - PubMed

Publication Types

Grant support