Display options
Share it on

Nat Commun. 2015 Jul 15;6:7734. doi: 10.1038/ncomms8734.

Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics.

Nature communications

Chun-Yuan Wang, Hung-Ying Chen, Liuyang Sun, Wei-Liang Chen, Yu-Ming Chang, Hyeyoung Ahn, Xiaoqin Li, Shangjr Gwo

Affiliations

  1. Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan.
  2. Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.
  3. Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan.
  4. Department of Photonics, National Chiao-Tung University, Hsinchu 30010, Taiwan.
  5. 1] Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan. [2] National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.

PMID: 26174058 PMCID: PMC4518272 DOI: 10.1038/ncomms8734

Abstract

The development of ultrasmooth, macroscopic-sized silver (Ag) crystals exhibiting reduced losses is critical to fully characterize the ultimate performance of Ag as a plasmonic material, and to enable cascaded and integrated plasmonic devices. Here we demonstrate the growth of single-crystal Ag plates with millimetre lateral sizes for linear and nonlinear plasmonic applications. Using these Ag crystals, surface plasmon polariton propagation lengths beyond 100 μm in the red wavelength region are measured. These lengths exceed the predicted values using the widely cited Johnson and Christy data. Furthermore, they allow the fabrication of highly reproducible plasmonic nanostructures by focused ion beam milling. We have designed and fabricated double-resonant nanogroove arrays using these crystals for spatially uniform and spectrally tunable second-harmonic generation. In conventional 'hot-spot'-based nonlinear processes such as surface-enhanced Raman scattering and second-harmonic generation, strong enhancement can only occur in random, localized regions. In contrast, our approach enables uniform nonlinear signal generation over a large area.

References

  1. Adv Mater. 2014 Sep 17;26(35):6106-10 - PubMed
  2. Phys Rev Lett. 2012 Mar 30;108(13):136802 - PubMed
  3. Chem Rev. 2011 Jun 8;111(6):3669-712 - PubMed
  4. Nat Commun. 2010;1:150 - PubMed
  5. Phys Rev Lett. 2005 Dec 16;95(25):257403 - PubMed
  6. Phys Rev Lett. 2004 Sep 24;93(13):137404 - PubMed
  7. Nat Nanotechnol. 2014 Apr;9(4):290-4 - PubMed
  8. Nano Lett. 2010 Jan;10(1):291-5 - PubMed
  9. Science. 2009 Jul 31;325(5940):594-7 - PubMed
  10. Nature. 2003 Aug 14;424(6950):824-30 - PubMed
  11. Nature. 2008 Jun 5;453(7196):757-60 - PubMed
  12. Science. 2005 Jun 10;308(5728):1607-9 - PubMed
  13. Science. 2012 Jul 27;337(6093):450-3 - PubMed
  14. Nano Lett. 2014 Aug 13;14(8):4778-84 - PubMed
  15. Nano Lett. 2011 Dec 14;11(12):5519-23 - PubMed
  16. ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11791-8 - PubMed
  17. Phys Rev Lett. 2003 Jan 10;90(1):013903 - PubMed
  18. Nat Mater. 2010 Mar;9(3):193-204 - PubMed
  19. Science. 2013 Dec 6;342(6163):1223-6 - PubMed
  20. Phys Rev Lett. 2005 Jan 14;94(1):017402 - PubMed
  21. Opt Express. 2012 Jun 4;20(12):12860-5 - PubMed
  22. Nano Lett. 2010 Dec 8;10(12):4880-3 - PubMed
  23. Opt Express. 2012 Feb 27;20(5):4856-70 - PubMed
  24. Adv Mater. 2012 Aug 2;24(29):3988-92 - PubMed
  25. Science. 2011 Jan 21;331(6015):290-1 - PubMed

Publication Types