Display options
Share it on

Front Cell Neurosci. 2015 Jul 20;9:269. doi: 10.3389/fncel.2015.00269. eCollection 2015.

The presence of cortical neurons in striatal-cortical co-cultures alters the effects of dopamine and BDNF on medium spiny neuron dendritic development.

Frontiers in cellular neuroscience

Rachel D Penrod, Justin Campagna, Travis Panneck, Laura Preese, Lorene M Lanier

Affiliations

  1. Department of Neuroscience, University of Minnesota Minneapolis, MN, USA ; Graduate Program in Neuroscience, University of Minnesota Minneapolis, MN, USA.
  2. Department of Neuroscience, University of Minnesota Minneapolis, MN, USA.

PMID: 26257605 PMCID: PMC4507052 DOI: 10.3389/fncel.2015.00269

Abstract

Medium spiny neurons (MSNs) are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine (DA) in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of DA on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF) has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment.

Keywords: BDNF; dendritic branching; dendritic spines; development; dopamine; in vitro; medium spiny neurons (MSN); striatum

References

  1. Nat Med. 2010 May;16(5):598-602, 1p following 602 - PubMed
  2. J Neurosci. 2004 Apr 28;24(17):4250-8 - PubMed
  3. Dev Neurosci. 1998;20(2-3):113-24 - PubMed
  4. Dev Neurosci. 1998;20(2-3):98-112 - PubMed
  5. Nat Neurosci. 2001 Oct;4(10):1006-13 - PubMed
  6. PLoS One. 2008 Apr 23;3(4):e1997 - PubMed
  7. Neuron. 2014 Dec 3;84(5):1009-22 - PubMed
  8. J Neurosci. 1995 Dec;15(12):8167-76 - PubMed
  9. J Neurosci. 1995 Jan;15(1 Pt 1):1-11 - PubMed
  10. Brain Res. 1981 Jun;227(3):309-32 - PubMed
  11. Nat Neurosci. 2011 Dec 18;15(2):215-23 - PubMed
  12. J Neurosci. 1983 Feb;3(2):383-8 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1669-74 - PubMed
  14. J Neurosci. 2010 Feb 24;30(8):2935-50 - PubMed
  15. Brain Res. 1968 Nov;11(2):467-70 - PubMed
  16. Curr Top Dev Biol. 2014;109:97-169 - PubMed
  17. J Comp Neurol. 1980 Mar 15;190(2):303-31 - PubMed
  18. J Neurosci. 2011 Jun 29;31(26):9735-45 - PubMed
  19. Nature. 1961 Nov 25;192:766-8 - PubMed
  20. Mol Cell Neurosci. 2010 May;44(1):94-108 - PubMed
  21. Brain Res. 2011 May 16;1390:41-9 - PubMed
  22. J Neurosci. 2010 Feb 3;30(5):1739-49 - PubMed
  23. PLoS One. 2011;6(11):e28168 - PubMed
  24. Curr Opin Neurobiol. 2001 Jun;11(3):349-56 - PubMed
  25. J Neurosci. 2003 Jul 30;23(17):6856-65 - PubMed
  26. Mol Cell Neurosci. 1998 May;11(1-2):9-18 - PubMed
  27. Neuron. 2005 May 19;46(4):529-32 - PubMed
  28. J Biol Chem. 2007 Mar 9;282(10 ):7352-9 - PubMed
  29. Eur J Neurosci. 2007 Feb;25(3):847-53 - PubMed
  30. Front Cell Neurosci. 2014 Aug 28;8:254 - PubMed
  31. Methods. 2003 May;30(1):94-105 - PubMed
  32. Nat Neurosci. 2001 Nov;4(11):1086-92 - PubMed
  33. Cell Mol Neurobiol. 2002 Dec;22(5-6):611-32 - PubMed
  34. J Neurosci. 1989 Aug;9(8):2982-97 - PubMed
  35. Science. 1996 May 3;272(5262):716-9 - PubMed
  36. J Neurosci. 1992 Jul;12(7):2685-705 - PubMed
  37. J Comp Neurol. 1986 Sep 1;251(1):84-99 - PubMed
  38. Eur J Neurosci. 2003 Jun;17 (12 ):2573-85 - PubMed
  39. J Neurosci. 2011 Jan 5;31(1):314-21 - PubMed
  40. Neuron. 2005 May 19;46(4):609-22 - PubMed
  41. J Comp Neurol. 1989 Jan 8;279(2):212-27 - PubMed
  42. PLoS One. 2009;4(3):e4770 - PubMed
  43. Mol Cell Neurosci. 2012 May;50(1):10-20 - PubMed
  44. Neuropharmacology. 2013 Apr;67:432-43 - PubMed
  45. Am J Anat. 1970 Apr;127(4):321-55 - PubMed
  46. J Neurophysiol. 2008 Dec;100(6):3175-84 - PubMed
  47. J Neurosci. 1996 Oct 15;16(20):6579-91 - PubMed
  48. Dev Neurobiol. 2013 May;73(5):370-83 - PubMed
  49. Cytometry A. 2009 Apr;75(4):371-6 - PubMed
  50. Neuron. 2005 Dec 8;48(5):757-71 - PubMed
  51. Prog Neurobiol. 2005 Feb;75(3):161-205 - PubMed
  52. Neuroscience. 1988 Jun;25(3):857-87 - PubMed
  53. J Electron Microsc Tech. 1988 Nov;10(3):265-81 - PubMed
  54. Annu Rev Physiol. 2002;64:313-53 - PubMed
  55. Neuron. 2014 Jan 8;81(1):153-64 - PubMed
  56. J Neurosci. 1998 Nov 1;18(21):8900-11 - PubMed
  57. Neuroscience. 1996 Sep;74(2):453-60 - PubMed
  58. J Neurosci Methods. 2011 Aug 30;200(1):1-13 - PubMed
  59. Neuron. 2003 Oct 9;40(2):229-42 - PubMed
  60. J Neurosci. 1984 Jan;4(1):111-24 - PubMed
  61. Neuroscience. 1994 Sep;62(1):65-85 - PubMed
  62. Neuroscience. 2007 Oct 26;149(2):457-64 - PubMed
  63. J Neurosci. 2008 Dec 10;28(50):13457-66 - PubMed
  64. Neuron. 1997 May;18(5):779-91 - PubMed
  65. J Anat. 1953 Oct;87(4):387-406 - PubMed
  66. Neuron. 1996 Jul;17(1):91-102 - PubMed
  67. Eur J Neurosci. 2011 Nov;34(9):1345-54 - PubMed
  68. J Cell Sci. 1969 Sep;5(2):509-29 - PubMed
  69. Hum Genet. 2012 Nov;131(11):1687-98 - PubMed
  70. Brain Res. 1985 Feb 18;327(1-2):307-11 - PubMed

Publication Types

Grant support