Display options
Share it on

Front Psychol. 2015 Jul 20;6:922. doi: 10.3389/fpsyg.2015.00922. eCollection 2015.

Infants' neural responses to facial emotion in the prefrontal cortex are correlated with temperament: a functional near-infrared spectroscopy study.

Frontiers in psychology

Miranda M Ravicz, Katherine L Perdue, Alissa Westerlund, Ross E Vanderwert, Charles A Nelson

Affiliations

  1. Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston MA, USA.
  2. Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston MA, USA ; Department of Pediatrics, Harvard Medical School, Boston MA, USA.
  3. Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston MA, USA ; Department of Pediatrics, Harvard Medical School, Boston MA, USA ; Harvard Graduate School of Education, Cambridge MA, USA.

PMID: 26257663 PMCID: PMC4507046 DOI: 10.3389/fpsyg.2015.00922

Abstract

Accurate decoding of facial expressions is critical for human communication, particularly during infancy, before formal language has developed. Different facial emotions elicit distinct neural responses within the first months of life. However, there are broad individual differences in such responses, so that the same emotional expression can elicit different brain responses in different infants. In this study, we sought to investigate such differences in the processing of emotional faces by analyzing infants's cortical metabolic responses to face stimuli and examining whether individual differences in these responses might vary as a function of infant temperament. Seven-month-old infants (N = 24) were shown photographs of women portraying happy expressions, and neural activity was recorded using functional near-infrared spectroscopy (fNIRS). Temperament data were collected using the Revised Infant Behavior Questionnaire Short Form, which assesses the broad temperament factors of Surgency/Extraversion (S/E), Negative Emotionality (NE), and Orienting/Regulation (O/R). We observed that oxyhemoglobin (oxyHb) responses to happy face stimuli were negatively correlated with infant temperament factors in channels over the left prefrontal cortex (uncorrected for multiple comparisons). To investigate the brain activity underlying this association, and to explore the use of fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with respect to temperament groups. Results showed preferential activation of the left hemisphere in low-NE infants in response to smiling faces. These results suggest that individual differences in temperament are associated with differential prefrontal oxyHb responses to faces. Overall, these analyses contribute to our current understanding of face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal asymmetry, and illuminate the neural correlates of face processing as modulated by temperament.

Keywords: emotion; face processing; functional near-infrared spectroscopy; infancy; negative emotionality; prefrontal cortex; temperament

References

  1. Neuroreport. 2008 Mar 26;19(5):579-82 - PubMed
  2. Psychophysiology. 1992 Sep;29(5):576-92 - PubMed
  3. Child Dev. 2007 Jan-Feb;78(1):232-45 - PubMed
  4. Hum Brain Mapp. 2004 Apr;21(4):257-70 - PubMed
  5. Int J Psychophysiol. 1998 Dec;31(1):89-92 - PubMed
  6. Phys Med Biol. 1988 Dec;33(12):1433-42 - PubMed
  7. Proc Biol Sci. 2013 Mar 13;280(1758):20123026 - PubMed
  8. Brain Imaging Behav. 2013 Jun;7(2):140-53 - PubMed
  9. Brain Cogn. 2007 Jun;64(1):30-41 - PubMed
  10. Neuroimage. 2007 Jan 1;34(1):399-406 - PubMed
  11. Child Dev. 1985 Feb;56(1):58-61 - PubMed
  12. Biol Psychol. 2004 Oct;67(1-2):219-33 - PubMed
  13. J Child Psychol Psychiatry. 2012 Nov;53(11):1118-27 - PubMed
  14. Int J Neurosci. 1998 Feb;93(1-2):87-100 - PubMed
  15. Behav Cogn Neurosci Rev. 2002 Mar;1(1):21-62 - PubMed
  16. Int J Psychophysiol. 2010 Jun;76(3):186-92 - PubMed
  17. Neurophotonics. 2014 Oct;1(2):025006 - PubMed
  18. Cereb Cortex. 2009 Feb;19(2):284-92 - PubMed
  19. Front Hum Neurosci. 2013 Apr 09;7:89 - PubMed
  20. Neuroimage. 2011 Jan 15;54(2):1600-6 - PubMed
  21. Psychiatry Res. 2009 Aug 15;168(3):242-9 - PubMed
  22. Neuroimage. 1999 Jun;9(6 Pt 1):611-8 - PubMed
  23. J Child Psychol Psychiatry. 2004 Oct;45(7):1209-18 - PubMed
  24. Nat Rev Neurosci. 2009 Jan;10(1):37-47 - PubMed
  25. Infant Behav Dev. 2008 Dec;31(4):637-46 - PubMed
  26. Philos Trans R Soc Lond B Biol Sci. 2003 Mar 29;358(1431):561-72 - PubMed
  27. Neurosci Biobehav Rev. 2010 Mar;34(3):269-84 - PubMed
  28. Dev Psychol. 2013 Sep;49(9):1739-53 - PubMed
  29. Cortex. 2002 Sep;38(4):589-612 - PubMed
  30. Child Dev. 2009 Jul-Aug;80(4):986-99 - PubMed
  31. Phys Med Biol. 1995 Feb;40(2):295-304 - PubMed
  32. Neuroimage. 2008 Nov 1;43(2):346-57 - PubMed
  33. Neuron. 2004 Dec 16;44(6):1043-55 - PubMed
  34. Biol Psychol. 2004 Oct;67(1-2):157-82 - PubMed
  35. Annu Rev Neurosci. 2000;23:155-84 - PubMed
  36. Science. 1982 Dec 17;218(4578):1235-7 - PubMed
  37. Child Dev. 2001 Jan-Feb;72(1):1-21 - PubMed
  38. Neurosci Lett. 2009 Mar 20;452(3):262-7 - PubMed
  39. Phys Med Biol. 2007 Dec 7;52(23):6849-64 - PubMed
  40. Neuroimage. 2014 Jan 15;85 Pt 1:264-71 - PubMed
  41. Physiol Meas. 2012 Feb;33(2):259-70 - PubMed
  42. Cortex. 2015 Mar;64:260-70 - PubMed
  43. Front Neurosci. 2012 Oct 11;6:147 - PubMed
  44. J Pers Soc Psychol. 2000 Jan;78(1):158-72 - PubMed
  45. Life Sci. 2006 May 1;78(23):2734-41 - PubMed
  46. J Pers Assess. 2014;96(4):445-58 - PubMed
  47. J Pers Soc Psychol. 1990 Feb;58(2):342-53 - PubMed

Publication Types

Grant support