Display options
Share it on

eNeuro. 2015 Jan-Feb;2(1). doi: 10.1523/ENEURO.0008-14.2015.

Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington's Disease.

eNeuro

Sandra M Holley, Prasad R Joshi, Anna Parievsky, Laurie Galvan, Jane Y Chen, Yvette E Fisher, My N Huynh, Carlos Cepeda, Michael S Levine

Affiliations

  1. Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90095.

PMID: 26203463 PMCID: PMC4507822 DOI: 10.1523/ENEURO.0008-14.2015

Abstract

In Huntington's disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological properties of LCIs in the R6/2 mouse model of HD. R6/2 mice show a severe, rapidly progressing phenotype. Immunocytochemical analysis of choline acetyltransferase-positive striatal neurons showed that, although the total number of cells was not changed, somatic areas were significantly smaller in symptomatic R6/2 mice compared to wildtype (WT) littermates, For electrophysiology, brain slices were obtained from presymptomatic (3-4 weeks) and symptomatic (>8 weeks) R6/2 mice and their WT littermates. Striatal LCIs were identified by somatic size and spontaneous action potential firing in the cell-attached mode. Passive and active membrane properties of LCIs were similar in presymptomatic R6/2 and WT mice. In contrast, LCIs from symptomatic R6/2 animals displayed smaller membrane capacitance and higher input resistance, consistent with reduced somatic size. In addition, more LCIs from symptomatic mice displayed irregular firing patterns and bursts of action potentials. They also displayed a higher frequency of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) and larger amplitude of electrically evoked IPSCs. Selective optogenetic stimulation of somatostatin- but not parvalbumin-containing interneurons also evoked larger amplitude IPSCs in LCIs from R6/2 mice. In contrast, glutamatergic spontaneous or evoked postsynaptic currents were not affected. Morphological and electrophysiological alterations, in conjunction with the presence of mutant huntingtin in LCIs, could explain impaired ACh release in HD mouse models.

Keywords: GABA; Huntington’s disease; R6/2 mouse model; cholinergic interneurons; optogenetics; striatum

References

  1. J Neurosci. 1999 Jul 1;19(13):5586-96 - PubMed
  2. J Comp Neurol. 2013 Aug 1;521(11):2502-22 - PubMed
  3. J Comp Neurol. 1992 Jan 8;315(2):137-59 - PubMed
  4. J Neurosci. 2008 Aug 27;28(35):8682-90 - PubMed
  5. J Comp Neurol. 2002 Jul 29;449(3):241-69 - PubMed
  6. Neuron. 2010 Jul 29;67(2):294-307 - PubMed
  7. J Neurosci. 2013 Apr 24;33(17):7393-406 - PubMed
  8. Nature. 2009 Jun 4;459(7247):663-7 - PubMed
  9. J Neurochem. 2003 May;85(4):1054-63 - PubMed
  10. J Neurosci. 1999 Feb 15;19(4):1189-202 - PubMed
  11. J Neurophysiol. 2001 Dec;86(6):2667-77 - PubMed
  12. Exp Neurol. 2011 Dec;232(2):119-25 - PubMed
  13. Curr Opin Neurobiol. 1995 Dec;5(6):733-41 - PubMed
  14. Cell. 1996 Nov 1;87(3):493-506 - PubMed
  15. J Neurosci. 2000 Nov 15;20(22):8493-503 - PubMed
  16. Neurobiol Dis. 2014 Feb;62:208-17 - PubMed
  17. J Neurosci. 2011 Jan 26;31(4):1183-92 - PubMed
  18. Neuroreport. 1999 Dec 16;10(18):3891-6 - PubMed
  19. Neuroscience. 1998 Sep;86(2):353-87 - PubMed
  20. Eur J Neurosci. 2001 Nov;14(10):1577-89 - PubMed
  21. Brain Res. 1987 May 12;411(1):162-6 - PubMed
  22. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5733-7 - PubMed
  23. Neuroscience. 1992 Dec;51(3):533-45 - PubMed
  24. Prog Neurobiol. 2007 Apr;81(5-6):253-71 - PubMed
  25. J Neurosci. 1998 Oct 15;18(20):8539-49 - PubMed
  26. Annu Rev Pharmacol Toxicol. 1980;20:533-51 - PubMed
  27. J Neuropathol Exp Neurol. 1998 May;57(5):369-84 - PubMed
  28. J Neurosci. 2013 Jan 23;33(4):1678-83 - PubMed
  29. J Neurosci. 2007 Jan 10;27(2):391-400 - PubMed
  30. ASN Neuro. 2010 Jun 18;2(3):e00036 - PubMed
  31. Hum Mol Genet. 2006 Nov 1;15(21):3119-31 - PubMed
  32. Nature. 2009 Jun 4;459(7247):698-702 - PubMed
  33. Mov Disord. 2013 Oct;28(12):1691-9 - PubMed
  34. Trends Neurosci. 1990 Jul;13(7):244-54 - PubMed
  35. Brain Res. 1992 Oct 30;594(2):253-62 - PubMed
  36. Nat Neurosci. 2014 May;17 (5):694-703 - PubMed
  37. Neurobiol Dis. 2006 Apr;22(1):143-52 - PubMed
  38. Trends Neurosci. 2007 Oct;30(10):545-53 - PubMed
  39. J Neurosci Res. 2004 Dec 15;78(6):855-67 - PubMed
  40. J Microsc. 1987 Sep;147(Pt 3):229-63 - PubMed
  41. J Neurosci Res. 1999 Nov 15;58(4):515-32 - PubMed
  42. J Neurosci. 2014 Feb 19;34(8):3090-4 - PubMed
  43. Science. 1985 Nov 1;230(4725):561-3 - PubMed
  44. J Neurophysiol. 2005 May;93(5):2565-74 - PubMed
  45. J Neurosci. 2003 Feb 1;23(3):961-9 - PubMed

Publication Types

Grant support