Display options
Share it on

Front Plant Sci. 2015 Jul 22;6:550. doi: 10.3389/fpls.2015.00550. eCollection 2015.

Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses.

Frontiers in plant science

Majse Nafisi, Maria Stranne, Lorenzo Fimognari, Susanna Atwell, Helle J Martens, Pai R Pedas, Sara F Hansen, Christiane Nawrath, Henrik V Scheller, Daniel J Kliebenstein, Yumiko Sakuragi

Affiliations

  1. Copenhagen Plant Science Center Frederiksberg, Denmark ; Department of Plant and Environmental Sciences, University of Copenhagen Frederiksberg, Denmark.
  2. Department of Plant Sciences, University of California, Davis Davis, CA, USA.
  3. Department of Plant and Environmental Sciences, University of Copenhagen Frederiksberg, Denmark.
  4. Department of Plant Molecular Biology, University of Lausanne Lausanne, Switzerland.
  5. Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA.
  6. Department of Plant Sciences, University of California, Davis Davis, CA, USA ; Danish National Research Foundation Center DynaMO Frederiksberg, Denmark.

PMID: 26257757 PMCID: PMC4510344 DOI: 10.3389/fpls.2015.00550

Abstract

The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

Keywords: Botrytis cinerea; cell wall acetylation; cuticles; epidermis; mRNA sequencing; peroxidase; trichomes

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 - PubMed
  2. Carbohydr Res. 1995 Jul 10;271(1):15-29 - PubMed
  3. Plant Cell Physiol. 2011 Aug;52(8):1289-301 - PubMed
  4. New Phytol. 2009 Nov;184(3):581-95 - PubMed
  5. Plant Physiol. 2006 Jan;140(1):49-58 - PubMed
  6. New Phytol. 2010 Sep;187(4):1075-88 - PubMed
  7. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  8. Plant Physiol. 2003 Jun;132(2):768-78 - PubMed
  9. Plant J. 2014 Oct;80(2):197-206 - PubMed
  10. Phytochemistry. 2005 Nov;66(22):2643-58 - PubMed
  11. EMBO J. 2007 Apr 18;26(8):2158-68 - PubMed
  12. Cell. 2006 Aug 11;126(3):467-75 - PubMed
  13. PLoS Pathog. 2011 Jul;7(7):e1002148 - PubMed
  14. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10098-103 - PubMed
  15. J R Soc Interface. 2012 Dec 26;10(80):20120847 - PubMed
  16. Bioinformatics. 2009 May 1;25(9):1105-11 - PubMed
  17. J Agric Food Chem. 2007 Jul 11;55(14):5461-8 - PubMed
  18. BMC Plant Biol. 2013 Sep 13;13:133 - PubMed
  19. J Exp Bot. 2013 Nov;64(16):4981-91 - PubMed
  20. Plant Cell. 2011 May;23 (5):1958-70 - PubMed
  21. Mol Plant. 2008 May;1(3):482-95 - PubMed
  22. Plant Cell. 2012 Jan;24(1):336-52 - PubMed
  23. Front Plant Sci. 2013 May 21;4:118 - PubMed
  24. Plant Physiol. 2006 Sep;142(1):124-34 - PubMed
  25. Plant Cell Physiol. 2013 Jul;54(7):1186-99 - PubMed
  26. Plant Physiol. 2004 Sep;136(1):2621-32 - PubMed
  27. Plant J. 2011 Nov;68(3):480-94 - PubMed
  28. Plant Cell. 2007 Mar;19(3):890-903 - PubMed
  29. Plant Physiol. 2011 Mar;155(3):1068-78 - PubMed
  30. Phytochemistry. 2015 Apr;112:15-21 - PubMed
  31. Plant J. 2004 Dec;40(6):920-30 - PubMed
  32. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11 - PubMed
  33. EMBO J. 1992 Dec;11(13):4677-84 - PubMed
  34. Plant J. 2004 Jan;37(1):139-46 - PubMed
  35. Plant Cell. 2011 Nov;23(11):4041-53 - PubMed
  36. Plant Cell. 2005 Oct;17(10):2832-47 - PubMed
  37. Methods Mol Biol. 2011;715:255-72 - PubMed
  38. PLoS Genet. 2009 Oct;5(10 ):e1000703 - PubMed
  39. Org Biomol Chem. 2008 Oct 21;6(20):3681-94 - PubMed
  40. Carbohydr Res. 2005 Aug 15;340(11):1818-25 - PubMed
  41. Plant Physiol. 2013 Nov;163(3):1107-17 - PubMed
  42. Plant Physiol. 2013 Sep;163(1):5-20 - PubMed
  43. Plant J. 1993 Jan;3(1):1-30 - PubMed
  44. Plant Physiol. 2014 Sep;166(1):181-9 - PubMed
  45. Plant Physiol. 2007 Jun;144(2):1093-103 - PubMed
  46. Front Plant Sci. 2014 Jun 13;5:274 - PubMed
  47. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804 - PubMed
  48. Plant Mol Biol. 2009 Mar;69(4):451-62 - PubMed
  49. Mol Plant. 2013 Jul;6(4):1373-5 - PubMed
  50. Plant Physiol. 1955 Jan;30(1):78-80 - PubMed
  51. Plant Physiol. 2015 Apr;167(4):1271-83 - PubMed
  52. Plant J. 2004 May;38(3):473-86 - PubMed
  53. Gene. 2012 Sep 10;506(1):50-61 - PubMed
  54. Nat Genet. 2000 May;25(1):25-9 - PubMed
  55. Plant J. 2007 Mar;49(6):972-80 - PubMed
  56. Front Plant Sci. 2012 Jan 31;3:12 - PubMed
  57. Science. 2004 Dec 24;306(5705):2206-11 - PubMed
  58. Phytochemistry. 2006 Dec;67(23):2597-610 - PubMed
  59. Traffic. 2014 Sep;15(9):915-32 - PubMed
  60. Plant Physiol. 2010 Oct;154(2):847-60 - PubMed
  61. Plant J. 2014 Jul;79(2):270-84 - PubMed
  62. Plant Physiol. 1997 Apr;113(4):1265-72 - PubMed

Publication Types