Display options
Share it on

Front Mol Neurosci. 2015 Jul 17;8:34. doi: 10.3389/fnmol.2015.00034. eCollection 2015.

Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS.

Frontiers in molecular neuroscience

Jason B Carmel, Wise Young, Ronald P Hart

Affiliations

  1. Brain Mind Research Institute and Departments of Pediatrics and Neurology, Weill Cornell Medical College New York, NY, USA ; Burke-Cornell Medical Research Institute White Plains, NY, USA.
  2. W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA.

PMID: 26236189 PMCID: PMC4505142 DOI: 10.3389/fnmol.2015.00034

Abstract

Poor regeneration of severed axons in the central nervous system (CNS) limits functional recovery. Regeneration failure involves interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG) neurons on CNS myelin include immaturity (the first few postnatal days), high levels of cyclic adenosine mono phosphate (cAMP), and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration.

Keywords: DRG; IL-6; SLPI; axon growth; mRNA expression; metallothionein

References

  1. Mol Endocrinol. 1994 Jan;8(1):59-68 - PubMed
  2. Neuron. 2002 Jun 13;34(6):885-93 - PubMed
  3. Neuroscience. 1995 Apr;65(4):997-1008 - PubMed
  4. Neuroreport. 2001 Oct 29;12 (15):3401-5 - PubMed
  5. J Neurosci. 2002 Feb 15;22(4):1303-15 - PubMed
  6. Mol Cell Neurosci. 1996 Feb;7(2):89-101 - PubMed
  7. Cell Mol Neurobiol. 2001 Oct;21(5):497-508 - PubMed
  8. Trends Neurosci. 1997 Feb;20(2):84-91 - PubMed
  9. FEBS Lett. 1997 Jun 23;410(1):22-4 - PubMed
  10. J Biol Chem. 2015 Jun 26;290(26):16343-56 - PubMed
  11. Neuron. 1994 Sep;13(3):757-67 - PubMed
  12. J Neurosci. 2006 May 17;26(20):5565-73 - PubMed
  13. Neuron. 1999 May;23(1):83-91 - PubMed
  14. Exp Neurol. 2004 Jan;185(1):81-96 - PubMed
  15. J Neurosci Res. 2002 Apr 1;68(1):1-6 - PubMed
  16. Brain Res Dev Brain Res. 1996 Oct 23;96(1-2):219-28 - PubMed
  17. J Comp Neurol. 1999 Jul 19;410(1):42-54 - PubMed
  18. Neuron. 2002 Aug 15;35(4):711-9 - PubMed
  19. J Neurosci. 2000 Jun 1;20(11):4138-44 - PubMed
  20. J Neurosci. 2007 Jul 25;27(30):7911-20 - PubMed
  21. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6692-6 - PubMed
  22. Gene Expr. 1999;7(4-6):321-35 - PubMed
  23. J Neurosci. 1995 Dec;15(12):7872-8 - PubMed
  24. BMC Neurosci. 2002 Oct 25;3:16 - PubMed
  25. Neuron. 1994 Oct;13(4):805-11 - PubMed
  26. Exp Neurol. 2000 Nov;166(1):153-65 - PubMed
  27. J Neurosci. 1997 Jan 15;17(2):646-58 - PubMed
  28. Exp Neurol. 1993 Sep;123(1):106-17 - PubMed
  29. Neuron. 1989 Sep;3(3):377-85 - PubMed
  30. Nature. 1984 Jun 28-Jul 4;309(5971):791-3 - PubMed
  31. Cell Mol Neurobiol. 2005 Mar;25(2):407-26 - PubMed
  32. Eur J Neurosci. 1997 Jul;9(7):1542-7 - PubMed
  33. J Comp Neurol. 1998 Apr 27;394(1):64-90 - PubMed
  34. J Neurosci. 1993 Feb;13(2):492-507 - PubMed
  35. BMC Neurosci. 2003 May 19;4:8 - PubMed
  36. Exp Neurol. 1998 Dec;154(2):602-11 - PubMed
  37. Mol Cell Neurosci. 2000 Feb;15(2):170-82 - PubMed
  38. Neuroscience. 1998 Jan;82(1):7-19 - PubMed
  39. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3720-4 - PubMed
  40. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11664-8 - PubMed
  41. Mol Cell Neurosci. 2014 Mar;59:97-105 - PubMed
  42. Exp Neurol. 1997 Nov;148(1):367-77 - PubMed
  43. J Cell Biol. 1981 Apr;89(1):96-103 - PubMed
  44. J Biol Chem. 1995 Oct 13;270(41):23922-5 - PubMed
  45. Neuron. 2002 Jun 13;34(6):895-903 - PubMed
  46. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3511-5 - PubMed
  47. J Neurosci Res. 2000 Sep 15;61(6):626-35 - PubMed
  48. Nature. 1990 Jan 25;343(6256):341-6 - PubMed
  49. J Neurosci. 2002 Mar 1;22(5):1816-22 - PubMed
  50. Acta Otolaryngol. 2002 Mar;122(2):161-7 - PubMed
  51. Neuroscience. 1997 Apr;77(4):1115-22 - PubMed
  52. J Biol Chem. 1994 Jun 3;269(22):15819-26 - PubMed
  53. Exp Neurol. 2012 Jul;236(1):19-27 - PubMed
  54. Neuron. 1999 Jul;23(3):537-48 - PubMed
  55. J Neurosci. 2001 Jul 1;21(13):4731-9 - PubMed
  56. J Physiol. 2007 Mar 15;579(Pt 3):877-92 - PubMed
  57. J Comp Neurol. 1998 Feb 2;391(1):11-29 - PubMed
  58. Annu Rev Neurosci. 1989;12:127-56 - PubMed
  59. Prog Brain Res. 1990;86:309-20 - PubMed
  60. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10 ):4039-44 - PubMed
  61. Nat Neurosci. 2001 Jan;4(1):38-43 - PubMed
  62. Brain Res Bull. 1997;44(6):727-34 - PubMed
  63. J Neurosci. 2013 Mar 20;33(12):5138-51 - PubMed
  64. Mol Neurobiol. 1991;5(2-4):61-85 - PubMed
  65. Arch Neurol. 1973 Jul;29(1):53-5 - PubMed

Publication Types

Grant support