Display options
Share it on

Front Behav Neurosci. 2015 Jul 14;9:180. doi: 10.3389/fnbeh.2015.00180. eCollection 2015.

Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes.

Frontiers in behavioral neuroscience

Gisela Garcia-Alvarez, Mahesh S Shetty, Bo Lu, Kenrick An Fu Yap, Masatsugu Oh-Hora, Sreedharan Sajikumar, Zoƫ Bichler, Marc Fivaz

Affiliations

  1. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore.
  2. Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore.
  3. Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University Higashi-ku, Japan.
  4. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Behavioral Neuroscience Laboratory, National Neuroscience Institute Singapore, Singapore.
  5. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore.

PMID: 26236206 PMCID: PMC4500926 DOI: 10.3389/fnbeh.2015.00180

Abstract

Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.

Keywords: AMPA receptor; PKA; STIM1 and STIM2; endoplasmic reticulum; excitatory synapse; long-term potentiation; spatial memory

References

  1. J Biol Chem. 2006 Jan 13;281(2):752-8 - PubMed
  2. J Cell Biol. 2005 May 9;169(3):435-45 - PubMed
  3. Nature. 2007 Jan 11;445(7124):168-76 - PubMed
  4. Biol Cybern. 1991;65(4):253-65 - PubMed
  5. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3245-50 - PubMed
  6. Neuron. 2010 Jan 14;65(1):7-19 - PubMed
  7. J Biol Chem. 2005 Jan 7;280(1):207-14 - PubMed
  8. Annu Rev Neurosci. 1998;21:127-48 - PubMed
  9. J Biol Chem. 2012 Mar 23;287(13):9862-72 - PubMed
  10. Acta Neurobiol Exp (Wars). 2009;69(4):413-28 - PubMed
  11. J Neuropathol Exp Neurol. 2004 May;63(5):429-40 - PubMed
  12. Curr Biol. 2005 Jul 12;15(13):1235-41 - PubMed
  13. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):232-7 - PubMed
  14. Cell. 1996 Dec 27;87(7):1327-38 - PubMed
  15. J Neurosci. 2005 Oct 26;25(43):9883-92 - PubMed
  16. J Theor Biol. 1977 Nov 21;69(2):385-9 - PubMed
  17. EMBO J. 2000 Jun 15;19(12):2775-85 - PubMed
  18. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10825-30 - PubMed
  19. Am Psychol. 1979 Jul;34(7):583-96 - PubMed
  20. Nat Neurosci. 2010 Jan;13(1):133-40 - PubMed
  21. Nat Rev Neurosci. 2014 Mar;15(3):181-92 - PubMed
  22. Eur J Neurosci. 2008 Aug;28(3):625-32 - PubMed
  23. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9697-701 - PubMed
  24. Science. 1998 Sep 25;281(5385):2038-42 - PubMed
  25. Nature. 1998 Dec 3;396(6710):433-9 - PubMed
  26. PLoS One. 2011 Apr 26;6(4):e19285 - PubMed
  27. J Neurosci. 2015 Feb 25;35(8):3397-402 - PubMed
  28. Genes Brain Behav. 2010 Jul;9(5):525-36 - PubMed
  29. Learn Mem. 2006 Nov-Dec;13(6):745-52 - PubMed
  30. Behav Neurosci. 2004 Feb;118(1):97-110 - PubMed
  31. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15037-42 - PubMed
  32. Cell. 2009 Mar 6;136(5):876-90 - PubMed
  33. Cell. 1984 May;37(1):205-15 - PubMed
  34. Eur J Neurosci. 2007 Feb;25(3):837-46 - PubMed
  35. Sci Signal. 2009 Oct 20;2(93):ra67 - PubMed
  36. J Cell Biol. 2006 Sep 11;174(6):803-13 - PubMed
  37. Nature. 1999 Sep 2;401(6748):63-9 - PubMed
  38. J Neurosci. 2003 May 1;23(9):3953-9 - PubMed
  39. J Psychopharmacol. 2007 Mar;21(2):134-5 - PubMed
  40. Science. 2010 Oct 1;330(6000):101-5 - PubMed
  41. Cell. 2009 Feb 6;136(3):389-92 - PubMed
  42. Nat Immunol. 2008 Apr;9(4):432-43 - PubMed
  43. Mol Biol Cell. 2015 Mar 15;26(6):1141-59 - PubMed
  44. Nat Neurosci. 2003 Feb;6(2):136-43 - PubMed
  45. Mol Cell Neurosci. 2002 Sep;21(1):158-72 - PubMed
  46. Neuron. 2014 May 7;82(3):635-44 - PubMed
  47. J Neurobiol. 2003 Jan;54(1):224-37 - PubMed
  48. Science. 2001 Nov 2;294(5544):1030-8 - PubMed
  49. Behav Neurosci. 2004 Feb;118(1):63-78 - PubMed
  50. Cell. 1996 Dec 27;87(7):1317-26 - PubMed
  51. Science. 1999 Jun 11;284(5421):1805-11 - PubMed
  52. Nat Neurosci. 2012 Jul 15;15(8):1153-9 - PubMed
  53. Nat Neurosci. 2002 Sep;5(9):868-73 - PubMed
  54. Science. 2010 Oct 1;330(6000):105-9 - PubMed
  55. Neuron. 2014 Apr 2;82(1):79-93 - PubMed
  56. Neuron. 2004 Jan 8;41(1):153-63 - PubMed
  57. PLoS One. 2013 Jul 30;8(7):e70249 - PubMed
  58. Eur J Pharmacol. 2003 Feb 28;463(1-3):3-33 - PubMed
  59. Neurosci Biobehav Rev. 2005;29(8):1193-205 - PubMed
  60. Biochemistry. 1996 Aug 13;35(32):10392-402 - PubMed
  61. Cell. 1994 Oct 7;79(1):59-68 - PubMed
  62. Curr Opin Neurobiol. 2005 Oct;15(5):607-13 - PubMed
  63. Learn Mem. 2009 Feb 23;16(3):198-209 - PubMed
  64. J Neurosci. 2009 Feb 4;29(5):1586-95 - PubMed
  65. Neuron. 1993 Aug;11(2):197-208 - PubMed
  66. J Physiol. 2005 Jun 1;565(Pt 2):579-91 - PubMed

Publication Types