Display options
Share it on

F1000Res. 2015 Jun 11;4:149. doi: 10.12688/f1000research.6581.1. eCollection 2015.

Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions.

F1000Research

Nicholas Gulati, Mayte Suárez-Fariñas, Joel Correa da Rosa, James G Krueger

Affiliations

  1. Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, 10065, USA.
  2. Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, 10065, USA ; The Center for Clinical and Translational Science, The Rockefeller University, New York, NY, 10065, USA.
  3. The Center for Clinical and Translational Science, The Rockefeller University, New York, NY, 10065, USA.

PMID: 26236467 PMCID: PMC4505786 DOI: 10.12688/f1000research.6581.1

Abstract

Diphencyprone (DPCP) is a hapten that causes delayed-type hypersensitivity (DTH) reactions in human skin, and is used as a topical therapeutic for alopecia areata, warts, and cutaneous melanoma metastases.  We examined peak DTH reactions induced by DPCP (3 days post-challenge) by comprehensive gene expression and histological analysis.  To better understand how these DTH reactions naturally resolve, we compared our DPCP biopsies to those from patients with psoriasis vulgaris, a chronic inflammatory disease that does not resolve.  By both microarray and qRT-PCR, we found that psoriasis lesional skin has significantly lower expression of many negative immune regulators compared to peak DPCP reactions.  These regulators include: interleukin-10, cytotoxic T lymphocyte-associated 4 (CTLA4), programmed cell death 1 (PD1), programmed cell death 1 ligand 1 (PDL1), programmed cell death 1 ligand 2 (PDL2), and indoleamine 2,3-dioxygenase (IDO1).  Their decreased expression was confirmed at the protein level by immunohistochemistry.  To more completely determine the balance of positive vs. negative immune regulators in both DPCP reactions and psoriasis, we developed one comprehensive gene list for positive regulatory (inflammatory) genes, and another for negative regulatory (immunosuppressive) genes, through Gene Ontology terms and literature review.  With this approach, we found that DPCP reactions have a higher ratio of negative to positive regulatory genes (both in terms of quantity and expression levels) than psoriasis lesional skin.  These data suggest that the disease chronicity that distinguishes psoriasis from transient DTH reactions may be related to absence of negative immune regulatory pathways, and induction of these is therefore of therapeutic interest.  Further study of these negative regulatory mechanisms that are present in DPCP reactions, but not in psoriasis, could reveal novel players in the pathogenesis of chronic inflammation.  The DPCP system used here thus provides a tractable model for primary discovery of pathways potentially involved in immune regulation in peripheral tissues.

Keywords: delayed-type hypersensitivity; diphencyprone; immune regulation; psoriasis

References

  1. Annu Rev Immunol. 2014;32:227-55 - PubMed
  2. J Invest Dermatol. 1994 Oct;103(4):530-3 - PubMed
  3. J Cutan Med Surg. 2002 May-Jun;6(3):214-7 - PubMed
  4. J Investig Dermatol Symp Proc. 2003 Jun;8(1):12-7 - PubMed
  5. J Immunol. 2006 Apr 1;176(7):4431-9 - PubMed
  6. PLoS One. 2012;7(9):e44274 - PubMed
  7. Biostatistics. 2007 Jan;8(1):118-27 - PubMed
  8. J Surg Oncol. 2014 Mar;109(4):308-13 - PubMed
  9. BMC Bioinformatics. 2005 Dec 10;6:294 - PubMed
  10. J Invest Dermatol. 2014 Oct;134(10):2531-40 - PubMed

Publication Types

Grant support