Display options
Share it on

Nature. 2015 Jul 16;523(7560):324-8. doi: 10.1038/nature14563.

Quantum-dot-in-perovskite solids.

Nature

Zhijun Ning, Xiwen Gong, Riccardo Comin, Grant Walters, Fengjia Fan, Oleksandr Voznyy, Emre Yassitepe, Andrei Buin, Sjoerd Hoogland, Edward H Sargent

Affiliations

  1. Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada.

PMID: 26178963 DOI: 10.1038/nature14563

Abstract

Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

References

  1. J Chem Phys. 2007 Sep 21;127(11):114105 - PubMed
  2. Nature. 2013 Jul 18;499(7458):316-9 - PubMed
  3. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  4. J Phys Chem Lett. 2014 Aug 21;5(16):2903-9 - PubMed
  5. Nano Lett. 2006 Feb;6(2):318-23 - PubMed
  6. Nat Mater. 2013 Jul;12(7):665-71 - PubMed
  7. J Am Chem Soc. 2014 Apr 9;136(14):5189-92 - PubMed
  8. Science. 2014 Jun 20;344(6190):1380-4 - PubMed
  9. Science. 2013 Oct 18;342(6156):341-4 - PubMed
  10. ACS Nano. 2014 Oct 28;8(10):10321-7 - PubMed
  11. Nano Lett. 2011 Dec 14;11(12):5471-6 - PubMed
  12. J Am Chem Soc. 2014 May 7;136(18):6550-3 - PubMed
  13. J Phys Chem Lett. 2014 Nov 6;5(21):3688-93 - PubMed
  14. Nano Lett. 2010 May 12;10(5):1805-11 - PubMed
  15. Nano Lett. 2014 Nov 12;14(11):6281-6 - PubMed
  16. Nature. 2012 Aug 16;488(7411):304-12 - PubMed
  17. Acc Chem Res. 2000 Nov;33(11):773-80 - PubMed
  18. Inorg Chem. 2013 Apr 15;52(8):4648-57 - PubMed
  19. Science. 2001 Jun 8;292(5523):1897-9 - PubMed
  20. Nano Lett. 2009 Apr;9(4):1699-703 - PubMed
  21. ACS Nano. 2013 Aug 27;7(8):6964-77 - PubMed
  22. ACS Nano. 2011 Dec 27;5(12):9950-7 - PubMed
  23. Chem Rev. 2010 Jan;110(1):389-458 - PubMed
  24. Nat Nanotechnol. 2011 Jul 10;6(8):485-90 - PubMed
  25. Nat Nanotechnol. 2014 Sep;9(9):687-92 - PubMed
  26. Phys Rev Lett. 1996 Feb 26;76(9):1517-1520 - PubMed
  27. J Phys Chem A. 2013 Apr 18;117(15):3143-8 - PubMed
  28. Nat Nanotechnol. 2007 May;2(5):259-61 - PubMed

Publication Types