Display options
Share it on

Genome Med. 2015 Jul 01;7(1):64. doi: 10.1186/s13073-015-0187-6. eCollection 2015.

Transferring genomics to the clinic: distinguishing Burkitt and diffuse large B cell lymphomas.

Genome medicine

Chulin Sha, Sharon Barrans, Matthew A Care, David Cunningham, Reuben M Tooze, Andrew Jack, David R Westhead

Affiliations

  1. School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, LS2 9JT UK.
  2. Haematological, Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK.
  3. Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.
  4. Royal Marsden Hospital, Fulham Road, London, SW3 6JJ UK.
  5. Haematological, Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK ; Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.

PMID: 26207141 PMCID: PMC4512160 DOI: 10.1186/s13073-015-0187-6

Abstract

BACKGROUND: Classifiers based on molecular criteria such as gene expression signatures have been developed to distinguish Burkitt lymphoma and diffuse large B cell lymphoma, which help to explore the intermediate cases where traditional diagnosis is difficult. Transfer of these research classifiers into a clinical setting is challenging because there are competing classifiers in the literature based on different methodology and gene sets with no clear best choice; classifiers based on one expression measurement platform may not transfer effectively to another; and, classifiers developed using fresh frozen samples may not work effectively with the commonly used and more convenient formalin fixed paraffin-embedded samples used in routine diagnosis.

METHODS: Here we thoroughly compared two published high profile classifiers developed on data from different Affymetrix array platforms and fresh-frozen tissue, examining their transferability and concordance. Based on this analysis, a new Burkitt and diffuse large B cell lymphoma classifier (BDC) was developed and employed on Illumina DASL data from our own paraffin-embedded samples, allowing comparison with the diagnosis made in a central haematopathology laboratory and evaluation of clinical relevance.

RESULTS: We show that both previous classifiers can be recapitulated using very much smaller gene sets than originally employed, and that the classification result is closely dependent on the Burkitt lymphoma criteria applied in the training set. The BDC classification on our data exhibits high agreement (~95 %) with the original diagnosis. A simple outcome comparison in the patients presenting intermediate features on conventional criteria suggests that the cases classified as Burkitt lymphoma by BDC have worse response to standard diffuse large B cell lymphoma treatment than those classified as diffuse large B cell lymphoma.

CONCLUSIONS: In this study, we comprehensively investigate two previous Burkitt lymphoma molecular classifiers, and implement a new gene expression classifier, BDC, that works effectively on paraffin-embedded samples and provides useful information for treatment decisions. The classifier is available as a free software package under the GNU public licence within the R statistical software environment through the link http://www.bioinformatics.leeds.ac.uk/labpages/softwares/ or on github https://github.com/Sharlene/BDC.

References

  1. Arch Pathol Lab Med. 2007 Dec;131(12):1805-16 - PubMed
  2. Nat Biotechnol. 2008 Mar;26(3):317-25 - PubMed
  3. Blood. 2008 Sep 15;112(6):2248-60 - PubMed
  4. Blood. 1999 Feb 1;93(3):1124 - PubMed
  5. Haematologica. 2009 Jul;94(7):894-6 - PubMed
  6. Ann Diagn Pathol. 2013 Jun;17(3):250-5 - PubMed
  7. Adv Immunol. 2005;87:163-208 - PubMed
  8. J Clin Oncol. 2005 Sep 10;23(26):6387-93 - PubMed
  9. Nat Genet. 2009 Feb;41(2):149-55 - PubMed
  10. BMC Bioinformatics. 2008 Nov 27;9:502 - PubMed
  11. J Mol Diagn. 2015 Jan;17(1):19-30 - PubMed
  12. Cold Spring Harb Perspect Med. 2014 Feb 01;4(2):null - PubMed
  13. Bioinformatics. 2003 Jan 22;19(2):185-93 - PubMed
  14. Nat Genet. 2012 Dec;44(12):1316-20 - PubMed
  15. Bioinformatics. 2004 Feb 12;20(3):307-15 - PubMed
  16. World J Gastroenterol. 2011 Apr 7;17(13):1710-7 - PubMed
  17. Ann Oncol. 2005 Dec;16(12):1928-35 - PubMed
  18. Leukemia. 2009 Apr;23(4):777-83 - PubMed
  19. Blood. 2014 Feb 20;123(8):1187-98 - PubMed
  20. J Acquir Immune Defic Syndr. 2010 May 1;54(1):18-26 - PubMed
  21. Nucleic Acids Res. 2013 Oct;41(18):8464-74 - PubMed
  22. Reproduction. 2010 Dec;140(6):787-801 - PubMed
  23. J Clin Oncol. 2010 Jul 10;28(20):3360-5 - PubMed
  24. Eur J Surg Oncol. 2001 Aug;27(5):504-8 - PubMed
  25. Blood. 2009 Sep 10;114(11):2273-9 - PubMed
  26. Bioinformatics. 2004 Jan 1;20(1):105-14 - PubMed
  27. N Engl J Med. 2006 Jun 8;354(23):2419-30 - PubMed
  28. Expert Rev Mol Diagn. 2003 Mar;3(2):185-200 - PubMed
  29. Blood. 2013 Sep 12;122(11):1985-6 - PubMed
  30. Biomark Res. 2014 May 09;2:9 - PubMed
  31. Mod Pathol. 2000 Feb;13(2):193-207 - PubMed
  32. Bioinformatics. 2008 Jul 1;24(13):1547-8 - PubMed
  33. Bioinformatics. 2008 May 1;24(9):1154-60 - PubMed
  34. Semin Cancer Biol. 2012 Jun;22(3):250-60 - PubMed
  35. Blood. 2011 Mar 31;117(13):3596-608 - PubMed
  36. Blood. 2008 Aug 15;112(4):1374-81 - PubMed
  37. Am J Surg Pathol. 2010 Jun;34(6):882-91 - PubMed
  38. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 - PubMed
  39. Fukuoka Igaku Zasshi. 2013 Aug;104(8):240-7 - PubMed
  40. Nat Genet. 2012 Dec;44(12):1321-5 - PubMed
  41. Hematol Oncol. 2010 Jun;28(2):53-6 - PubMed
  42. N Engl J Med. 2006 Jun 8;354(23):2431-42 - PubMed
  43. Curr Hematol Malig Rep. 2011 Mar;6(1):58-66 - PubMed
  44. Mol Immunol. 2013 Jul;54(3-4):472-81 - PubMed
  45. PLoS One. 2013;8(2):e55895 - PubMed
  46. Mol Biol (Mosk). 2003 Jul-Aug;37(4):573-84 - PubMed
  47. BMC Bioinformatics. 2011 Dec 07;12:467 - PubMed
  48. J Healthc Eng. 2013;4(2):255-83 - PubMed
  49. Nucleic Acids Res. 2008 Feb;36(2):e11 - PubMed

Publication Types

Grant support