Display options
Share it on

Nat Commun. 2015 Aug 04;6:7917. doi: 10.1038/ncomms8917.

Time reversal and charge conjugation in an embedding quantum simulator.

Nature communications

Xiang Zhang, Yangchao Shen, Junhua Zhang, Jorge Casanova, Lucas Lamata, Enrique Solano, Man-Hong Yung, Jing-Ning Zhang, Kihwan Kim

Affiliations

  1. Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  2. Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, Ulm D-89069, Germany.
  3. Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao E-48080, Spain.
  4. 1] Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao E-48080, Spain [2] IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao 48013, Spain.

PMID: 26239028 PMCID: PMC4532877 DOI: 10.1038/ncomms8917

Abstract

A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a (171)Yb(+) ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones.

References

  1. Science. 2012 Jun 1;336(6085):1130-3 - PubMed
  2. Phys Rev Lett. 2013 Dec 13;111(24):240502 - PubMed
  3. Phys Rev Lett. 2013 Aug 30;111(9):090503 - PubMed
  4. Nature. 2010 Jan 7;463(7277):68-71 - PubMed
  5. Phys Rev Lett. 2011 Feb 11;106(6):060503 - PubMed
  6. Phys Rev Lett. 2013 Feb 15;110(7):070401 - PubMed
  7. Rep Prog Phys. 2012 Feb;75(2):024401 - PubMed
  8. Phys Rev Lett. 2011 Dec 23;107(26):260501 - PubMed
  9. Phys Rev Lett. 2007 Jun 22;98(25):253005 - PubMed
  10. Phys Rev Lett. 2010 Oct 1;105(14):143902 - PubMed

Publication Types