Display options
Share it on

AMB Express. 2015 Dec;5(1):137. doi: 10.1186/s13568-015-0137-0. Epub 2015 Aug 04.

Bacterial secretion of soluble and functional trivalent scFv-based N-terminal trimerbodies.

AMB Express

Ana Blanco-Toribio, Ana Álvarez-Cienfuegos, Noelia Sainz-Pastor, Nekane Merino, Marta Compte, Laura Sanz, Francisco J Blanco, Luis Álvarez-Vallina

Affiliations

  1. Department of Antibody Engineering, Leadartis S.L., Madrid, Spain, [email protected].

PMID: 26239030 PMCID: PMC4523561 DOI: 10.1186/s13568-015-0137-0

Abstract

Recombinant antibodies are used with great success in many different diagnostic and therapeutic applications. A variety of protein expression systems are available, but nowadays almost all therapeutic antibodies are produced in mammalian cell lines due to their complex structure and glycosylation requirements. However, production of clinical-grade antibodies in mammalian cells is very expensive and time-consuming. On the other hand, Escherichia coli (E. coli) is known to be the simplest, fastest and most cost-effective recombinant expression system, which usually achieves higher protein yields than mammalian cells. Indeed, it is one of the most popular host in the industry for the expression of recombinant proteins. In this work, a trivalent single-chain fragment variable (scFv)-based N-terminal trimerbody, specific for native laminin-111, was expressed in human embryonic kidney 293 cells and in E. coli. Mammalian and bacterially produced anti-laminin trimerbody molecules display comparable functional and structural properties, although importantly the yield of trimerbody expressed in E. coli was considerably higher than in human cells. These results demonstrated that E. coli is a versatile and efficient expression system for multivalent trimerbody-based molecules that is suitable for their industrial production.

References

  1. J Immunol Methods. 1997 Jan 15;200(1-2):69-77 - PubMed
  2. Drug Discov Today. 2014 May;19(5):590-601 - PubMed
  3. FEBS J. 2012 Jul;279(13):2262-71 - PubMed
  4. Microb Cell Fact. 2009 May 14;8:26 - PubMed
  5. PLoS One. 2009;4(4):e5381 - PubMed
  6. MAbs. 2012 Mar-Apr;4(2):226-32 - PubMed
  7. Cancer Immunol Immunother. 2001 Dec;50(10):557-65 - PubMed
  8. J Mol Biol. 2011 Mar 4;406(4):595-603 - PubMed
  9. Trends Biotechnol. 2014 Jan;32(1):54-60 - PubMed
  10. MAbs. 2013 Jan-Feb;5(1):70-9 - PubMed
  11. Nat Biotechnol. 2007 May;25(5):563-5 - PubMed
  12. Drug Discov Today. 2015 May;20(5):588-94 - PubMed
  13. Nat Rev Immunol. 2010 May;10(5):297 - PubMed
  14. PLoS One. 2013 Jun 28;8(6):e67008 - PubMed
  15. Mol Immunol. 2014 Feb;57(2):66-73 - PubMed
  16. Protein Eng Des Sel. 2013 Jun;26(6):417-23 - PubMed
  17. Methods Mol Biol. 2012;907:699-712 - PubMed
  18. Cancer Gene Ther. 2007 Apr;14(4):380-8 - PubMed
  19. Curr Opin Struct Biol. 2011 Feb;21(1):32-41 - PubMed
  20. Cancer Res. 1999 Nov 15;59(22):5758-67 - PubMed
  21. EMBO J. 2003 Apr 1;22(7):1508-17 - PubMed
  22. J Biotechnol. 2011 Jan 20;151(2):166-74 - PubMed
  23. J AOAC Int. 2010 Jan-Feb;93(1):80-8 - PubMed
  24. Methods Enzymol. 1990;185:60-89 - PubMed
  25. Gene Ther. 2002 Aug;9(15):1049-53 - PubMed
  26. Microb Cell Fact. 2014 Aug 12;13:116 - PubMed
  27. PLoS One. 2010 Apr 20;5(4):e10261 - PubMed
  28. Front Immunol. 2013 Jul 29;4:217 - PubMed
  29. Trends Biotechnol. 2010 Jul;28(7):355-62 - PubMed
  30. MAbs. 2014 Jul-Aug;6(4):799-802 - PubMed
  31. Curr Opin Biotechnol. 1999 Oct;10(5):411-21 - PubMed
  32. J Ind Microbiol Biotechnol. 2012 Mar;39(3):383-99 - PubMed
  33. Int J Cancer. 2006 Jul 15;119(2):455-62 - PubMed
  34. Microb Cell Fact. 2011 May 14;10:32 - PubMed

Publication Types