Display options
Share it on

Skelet Muscle. 2015 Jul 15;5:22. doi: 10.1186/s13395-015-0046-6. eCollection 2015.

Developmental myosins: expression patterns and functional significance.

Skeletal muscle

Stefano Schiaffino, Alberto C Rossi, Vika Smerdu, Leslie A Leinwand, Carlo Reggiani

Affiliations

  1. Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padova, Italy.
  2. Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA.
  3. Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
  4. Department of Biomedical Sciences, University of Padova, Padova, Italy ; CNR Institute of Neuroscience, Padova, Italy.

PMID: 26180627 PMCID: PMC4502549 DOI: 10.1186/s13395-015-0046-6

Abstract

Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1 embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes, characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle contractile activity and body movements in joint development and in shaping the form of the face during fetal development. The biochemical and biophysical properties of developmental myosins have only partially been defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles contract against a very low load compared to postnatal muscles.

Keywords: Distal arthrogryposis; Embryonic myosin; Muscle development; Muscle regeneration; Myosin heavy chain; Neonatal myosin

References

  1. Development. 1990 Oct;110(2):547-54 - PubMed
  2. Dev Biol. 1990 Apr;138(2):256-74 - PubMed
  3. Dev Biol. 1993 Sep;159(1):173-83 - PubMed
  4. Muscle Nerve. 1988 Jun;11(6):610-20 - PubMed
  5. Physiol Rev. 2011 Oct;91(4):1447-531 - PubMed
  6. Development. 2008 Jun;135(12):2115-26 - PubMed
  7. J Biol Chem. 1988 May 5;263(13):6370-4 - PubMed
  8. Anat Rec (Hoboken). 2014 Sep;297(9):1571-84 - PubMed
  9. Physiol Rev. 1972 Jan;52(1):129-97 - PubMed
  10. J Physiol. 1960 Feb;150:399-416 - PubMed
  11. J Muscle Res Cell Motil. 1994 Oct;15(5):517-34 - PubMed
  12. J Biol Chem. 1983 Jan 10;258(1):670-8 - PubMed
  13. J Appl Physiol (1985). 2006 Dec;101(6):1546-55 - PubMed
  14. J Physiol. 2003 Feb 1;546(Pt 3):677-89 - PubMed
  15. Physiol Genomics. 2007 Dec 19;32(1):1-15 - PubMed
  16. J Cell Biol. 1990 Oct;111(4):1465-76 - PubMed
  17. Biol Cell. 2003 Sep;95(6):399-406 - PubMed
  18. J Neurol Sci. 1989 Jun;91(1-2):71-8 - PubMed
  19. Trends Neurosci. 1999 Apr;22(4):180-4 - PubMed
  20. J Cell Biol. 1985 Aug;101(2):618-29 - PubMed
  21. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6355-63 - PubMed
  22. Science. 1983 Sep 2;221(4614):921-7 - PubMed
  23. Muscle Nerve. 1994 Jan;17(1):31-41 - PubMed
  24. Mol Cell Biol. 1990 Mar;10(3):1095-104 - PubMed
  25. J Muscle Res Cell Motil. 1987 Apr;8(2):161-72 - PubMed
  26. J Cell Biol. 1987 Mar;104(3):447-59 - PubMed
  27. PLoS Genet. 2014 May 22;10(5):e1004386 - PubMed
  28. Dev Biol. 1988 May;127(1):1-11 - PubMed
  29. J Physiol. 1973 Oct;234(1):29-42 - PubMed
  30. J Exp Biol. 2009 Aug;212(Pt 16):2511-9 - PubMed
  31. J Neurol Sci. 1987 Oct;81(1):19-43 - PubMed
  32. N Engl J Med. 2004 Dec 9;351(24):2556-8; author reply 2556-8 - PubMed
  33. Trends Cardiovasc Med. 1993 Jan-Feb;3(1):12-7 - PubMed
  34. FEBS Lett. 1983 Jun 13;156(2):335-9 - PubMed
  35. N Engl J Med. 2004 Jul 29;351(5):460-9 - PubMed
  36. J Mol Cell Cardiol. 2003 Oct;35(10):1307-18 - PubMed
  37. Am J Med Genet A. 2014 Nov;164A(11):2808-13 - PubMed
  38. J Biol Chem. 1988 Sep 25;263(27):13930-6 - PubMed
  39. Biophys J. 2014 Mar 18;106(6):1236-49 - PubMed
  40. J Physiol. 1965 Feb;176:355-70 - PubMed
  41. Cell Tissue Res. 1988 Oct;254(1):59-68 - PubMed
  42. Eur J Biochem. 1986 Apr 15;156(2):291-6 - PubMed
  43. Dev Biol. 1993 Jul;158(1):183-99 - PubMed
  44. Dev Biol. 2006 Jun 15;294(2):541-53 - PubMed
  45. Mol Biol Cell. 2014 Apr;25(8):1384-95 - PubMed
  46. Mech Dev. 1991 Aug;35(1):3-11 - PubMed
  47. Exp Neurol. 1983 Jan;79(1):106-17 - PubMed
  48. Am J Med Genet A. 2006 Nov 15;140(22):2387-93 - PubMed
  49. Exp Cell Res. 1986 Mar;163(1):211-20 - PubMed
  50. J Biol Chem. 1984 Nov 10;259(21):13573-8 - PubMed
  51. Cell Struct Funct. 1997 Feb;22(1):147-53 - PubMed
  52. Biochem Biophys Res Commun. 2003 Apr 18;303(4):1024-7 - PubMed
  53. Development. 2003 Aug;130(15):3391-402 - PubMed
  54. Am J Med Genet A. 2013 Mar;161A(3):550-5 - PubMed
  55. Dev Biol. 1999 Dec 1;216(1):312-26 - PubMed
  56. J Biol Chem. 1985 Nov 25;260(27):14403-5 - PubMed
  57. J Cell Biol. 1993 Nov;123(4):823-35 - PubMed
  58. J Cell Biol. 1985 Jan;100(1):161-74 - PubMed
  59. Dev Biol. 1990 Sep;141(1):24-40 - PubMed
  60. Acta Neuropathol. 2013 Jan;125(1):3-18 - PubMed
  61. Hum Mol Genet. 2015 Jun 15;24(12):3348-58 - PubMed
  62. Muscle Nerve. 1986 Jan;9(1):51-8 - PubMed
  63. J Muscle Res Cell Motil. 2012 Mar;32(6):383-90 - PubMed
  64. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3716-20 - PubMed
  65. J Cell Biol. 1981 Jul;90(1):128-44 - PubMed
  66. J Exp Biol. 2005 Nov;208(Pt 22):4243-53 - PubMed
  67. Am J Physiol Regul Integr Comp Physiol. 2012 Apr;302(7):R854-67 - PubMed
  68. Development. 1993 Jul;118(3):919-29 - PubMed
  69. J Histochem Cytochem. 2010 Jul;58(7):623-34 - PubMed
  70. Anat Embryol (Berl). 1990;181(6):513-22 - PubMed
  71. J Anim Sci. 2013 Oct;91(10):4684-91 - PubMed
  72. J Appl Physiol (1985). 1998 Apr;84(4):1260-8 - PubMed
  73. Dev Biol. 2001 Jan 15;229(2):383-95 - PubMed
  74. Physiol Rev. 1996 Apr;76(2):371-423 - PubMed
  75. EMBO Rep. 2015 Mar;16(3):387-95 - PubMed
  76. Am J Surg Pathol. 1986 Oct;10(10):680-6 - PubMed
  77. J Embryol Exp Morphol. 1969 Nov;22(3):349-71 - PubMed
  78. Nat Genet. 2006 May;38(5):561-5 - PubMed
  79. J Cell Biol. 1971 Nov;51(21):369-83 - PubMed
  80. J Cell Biol. 1990 Dec;111(6 Pt 1):2427-36 - PubMed
  81. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1053-8 - PubMed
  82. Nature. 1982 Jul 15;298(5871):294-6 - PubMed
  83. J Physiol. 2013 Jun 15;591(12):3049-61 - PubMed
  84. J Physiol. 1964 Sep;173:74-95 - PubMed
  85. J Biol Chem. 2002 Aug 2;277(31):27593-605 - PubMed
  86. Curr Pharm Des. 2010;16(8):906-14 - PubMed
  87. Dev Biol. 1991 Nov;148(1):314-21 - PubMed
  88. J Appl Physiol (1985). 2003 May;94(5):1896-902 - PubMed
  89. Microsc Res Tech. 2000 Sep 15;50(6):473-91 - PubMed
  90. Nature. 1982 Oct 28;299(5886):830-3 - PubMed
  91. Nature. 1981 Aug 27;292(5826):805-9 - PubMed
  92. J Mol Biol. 1978 Dec 15;126(3):415-31 - PubMed
  93. J Cell Biol. 1993 May;121(4):795-810 - PubMed
  94. Science. 1986 Feb 7;231(4738):597-600 - PubMed
  95. J Exp Biol. 2010 May;213(Pt 10):1633-42 - PubMed
  96. J Physiol. 2010 Jan 15;588(Pt 2):353-64 - PubMed
  97. Cell Signal. 2014 Sep;26(9):1837-45 - PubMed
  98. Eur J Biochem. 1988 May 16;174(1):103-10 - PubMed
  99. J Physiol. 2005 Feb 1;562(Pt 3):847-57 - PubMed
  100. J Mol Biol. 1999 Jul 2;290(1):61-75 - PubMed
  101. J Cell Biol. 1980 Jun;85(3):672-81 - PubMed
  102. Mol Aspects Med. 2002 Aug;23(4):293-342 - PubMed
  103. FEBS Lett. 1984 Jan 23;166(1):71-5 - PubMed
  104. Dev Biol. 1992 Dec;154(2):284-98 - PubMed
  105. J Neuropathol Exp Neurol. 1980 Jul;39(4):476-86 - PubMed

Publication Types

Grant support