Display options
Share it on

J Phys Chem Lett. 2015 Jan 02;6(1):13-21. doi: 10.1021/jz5022087. Epub 2014 Dec 09.

Qualitatively Incorrect Features in the TDDFT Spectrum of Thiophene-Based Compounds.

The journal of physical chemistry letters

Antonio Prlj, Basile F E Curchod, Alberto Fabrizio, Leonard Floryan, Clémence Corminboeuf

Affiliations

  1. †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  2. ‡Department of Chemistry, Stanford University, Stanford, California 94305, United States.
  3. §Departement Chemie und Angewandte Biowissenschaften, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.

PMID: 26263085 PMCID: PMC4598019 DOI: 10.1021/jz5022087

Abstract

Ab initio molecular electronic structure computations of thiophene-based compounds constitute an active field of research prompted by the growing interest in low-cost materials for organic electronic devices. In particular, the modeling of electronically excited states and other time-dependent phenomena has moved toward the description of more realistic albeit challenging systems. We demonstrate that due to its underlying approximations, time-dependent density functional theory predicts results that are qualitatively incorrect for thiophene and thienoacenes, although not for oligothiophene chains. The failure includes spurious state inversion and excitation characters, wrong distribution of oscillator strengths and erroneous potential energy surfaces. We briefly analyze possible origins of this behavior and identify alternative methods that alleviate these problems.

Keywords: absorption spectra; oligothiophenes; organic electronics; thienoacenes; thiophene; time-dependent density functional theory

References

  1. J Chem Phys. 2007 Oct 21;127(15):154116 - PubMed
  2. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  3. J Chem Theory Comput. 2011 May 10;7(5):1296-306 - PubMed
  4. Phys Chem Chem Phys. 2014 Oct 21;16(39):21629-44 - PubMed
  5. Org Biomol Chem. 2012 Sep 7;10(33):6682-92 - PubMed
  6. ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2331-6 - PubMed
  7. J Chem Phys. 2010 Aug 21;133(7):074104 - PubMed
  8. J Phys Chem B. 2006 Apr 20;110(15):7702-7 - PubMed
  9. Phys Chem Chem Phys. 2009 Jun 14;11(22):4611-20 - PubMed
  10. Phys Chem Chem Phys. 2011 Jan 28;13(4):1457-65 - PubMed
  11. Chem Rev. 2009 Mar 11;109(3):1141-276 - PubMed
  12. Chemphyschem. 2012 Jan 16;13(1):28-51 - PubMed
  13. J Phys Chem A. 2011 Oct 27;115(42):11544-50 - PubMed
  14. Adv Mater. 2011 Oct 11;23(38):4347-70 - PubMed
  15. Chemphyschem. 2003 Dec 15;4(12):1308-15 - PubMed
  16. J Am Chem Soc. 2009 Mar 4;131(8):2818-20 - PubMed
  17. Chem Rev. 2005 Nov;105(11):4009-37 - PubMed
  18. J Chem Theory Comput. 2014 May 13;10(5):1848-51 - PubMed
  19. J Chem Theory Comput. 2011 Aug 9;7(8):2408-15 - PubMed
  20. Chem Commun (Camb). 2011 Aug 21;47(31):8847-9 - PubMed
  21. Phys Chem Chem Phys. 2010 May 21;12(19):4959-67 - PubMed
  22. J Chem Phys. 2008 Jan 28;128(4):044118 - PubMed
  23. Chem Soc Rev. 2013 Feb 7;42(3):845-56 - PubMed
  24. J Phys Chem A. 2006 Apr 20;110(15):5058-65 - PubMed
  25. J Chem Theory Comput. 2012 Nov 13;8(11):4483-93 - PubMed
  26. Chemphyschem. 2003 Mar 17;4(3):292-5 - PubMed
  27. Phys Chem Chem Phys. 2011 Jun 7;13(21):10350-63 - PubMed
  28. Phys Chem Chem Phys. 2008 Jan 21;10(3):380-92 - PubMed
  29. J Chem Theory Comput. 2010 Dec 14;6(12):3704-3712 - PubMed
  30. Phys Chem Chem Phys. 2014 Jul 28;16(28):14334-56 - PubMed
  31. Org Lett. 2012 Sep 7;14(17):4330-3 - PubMed
  32. J Chem Phys. 2004 Apr 1;120(13):5932-7 - PubMed

Publication Types