Display options
Share it on

Front Hum Neurosci. 2015 Jun 19;9:363. doi: 10.3389/fnhum.2015.00363. eCollection 2015.

Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction.

Frontiers in human neuroscience

Shinichi Kotan, Sho Kojima, Shota Miyaguchi, Kazuhiro Sugawara, Hideaki Onishi

Affiliations

  1. Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare Niigata, Japan.

PMID: 26150781 PMCID: PMC4472998 DOI: 10.3389/fnhum.2015.00363

Abstract

In this study, we examined the effect of muscle fatigue induced by tetanic electrical stimulation (ES) and submaximal isometric contraction on corticomotor excitability. Experiments were performed in a cross-over design. Motor-evoked potentials (MEPs) were elicited by transcranial magnetic stimulation (TMS). Corticomotor excitability was recorded before and after thumb opposition muscle fatigue tasks, in which 10% of the maximal tension intensity was induced by tetanic ES or voluntary contraction (VC). The participants were 10 healthy individuals who performed each task for 10 min. Surface electrodes placed over the abductor pollicis brevis (APB) muscle recorded MEPs. F- and M-waves were elicited from APB by supramaximal ES of the median nerve. After the tetanic ES- and VC tasks, MEP amplitudes were significantly lower than before the task. However, F- and M-wave amplitudes remained unchanged. These findings suggest that corticospinal excitability is reduced by muscle fatigue as a result of intracortical inhibitory mechanisms. Our results also suggest that corticomotor excitability is reduced by muscle fatigue caused by both VC and tetanic ES.

Keywords: F-wave; M-wave; fatigue; motor-evoked potential; tetanic electrical stimulation; transcranial magnetic stimulation

References

  1. J Physiol. 1999 Dec 15;521 Pt 3:749-59 - PubMed
  2. J Physiol. 1996 Feb 15;491 ( Pt 1):271-80 - PubMed
  3. Neuroimage. 2007 May 1;35(4):1438-49 - PubMed
  4. Exp Brain Res. 2006 Apr;170(2):191-8 - PubMed
  5. Arch Phys Med Rehabil. 2011 Sep;92(9):1423-30 - PubMed
  6. Exp Brain Res. 1993;93(1):181-4 - PubMed
  7. Electroencephalogr Clin Neurophysiol. 1997 Oct;105(5):352-6 - PubMed
  8. Physiol Rev. 2001 Oct;81(4):1725-89 - PubMed
  9. J Neurosci. 1998 Sep 1;18(17):7000-7 - PubMed
  10. Exp Brain Res. 2005 May;162(4):497-502 - PubMed
  11. Exp Brain Res. 2012 Jan;216(1):41-9 - PubMed
  12. Neurosci Lett. 2007 Jun 8;420(1):72-5 - PubMed
  13. Electroencephalogr Clin Neurophysiol. 1997 Oct;105(5):340-4 - PubMed
  14. Exp Brain Res. 2000 Mar;131(1):135-43 - PubMed
  15. J Neurophysiol. 2003 Jul;90(1):300-12 - PubMed
  16. Exp Brain Res. 2003 Apr;149(4):535-8 - PubMed
  17. Clin Neurophysiol. 2011 Mar;122(3):456-63 - PubMed
  18. Eur J Appl Physiol. 2000 Oct;83(2-3):106-15 - PubMed
  19. Exp Brain Res. 1995;107(1):80-6 - PubMed
  20. Cereb Cortex. 2002 Oct;12(10):1057-62 - PubMed
  21. J Appl Physiol (1985). 2008 Feb;104(2):542-50 - PubMed
  22. Ann Neurol. 2002 Dec;52(6):755-61 - PubMed
  23. J Physiol. 1996 Jan 15;490 ( Pt 2):519-28 - PubMed
  24. Brain. 2001 Jun;124(Pt 6):1171-81 - PubMed
  25. Muscle Nerve. 1997 Sep;20(9):1158-66 - PubMed
  26. Muscle Nerve. 2000 Dec;23(12):1840-6 - PubMed
  27. Exp Brain Res. 1995;105(2):276-82 - PubMed
  28. Muscle Nerve. 2001 Jan;24(1):18-29 - PubMed
  29. J Physiol. 2002 Apr 15;540(Pt 2):623-33 - PubMed
  30. J Appl Physiol (1985). 2000 Jul;89(1):305-13 - PubMed
  31. J Physiol. 2000 Jun 15;525 Pt 3:793-801 - PubMed
  32. Neurology. 1996 May;46(5):1376-82 - PubMed
  33. Clin Neurophysiol. 2012 Jan;123(1):193-9 - PubMed
  34. Clin Neurophysiol. 2010 Feb;121(2):248-54 - PubMed
  35. J Physiol. 1996 Jan 15;490 ( Pt 2):529-36 - PubMed
  36. Clin Neurophysiol. 2002 Jul;113(7):1092-8 - PubMed
  37. Muscle Nerve. 1996 Nov;19(11):1429-34 - PubMed
  38. Clin Neurophysiol. 2004 Sep;115(9):2128-33 - PubMed

Publication Types