Display options
Share it on

Beilstein J Org Chem. 2015 May 18;11:828-36. doi: 10.3762/bjoc.11.92. eCollection 2015.

Adsorption mechanism and valency of catechol-functionalized hyperbranched polyglycerols.

Beilstein journal of organic chemistry

Stefanie Krysiak, Qiang Wei, Klaus Rischka, Andreas Hartwig, Rainer Haag, Thorsten Hugel

Affiliations

  1. Physik Department and IMETUM, Technische Universität München, 85748 Garching, Germany.
  2. Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
  3. Fraunhofer Institute for Manufacturing Technology and Advanced Materials (FhG IFAM), 28359 Bremen, Germany.
  4. Institute of Physical Chemistry, University of Freiburg, Albertstraße 23a, 79104 Freiburg, Germany.

PMID: 26150898 PMCID: PMC4463490 DOI: 10.3762/bjoc.11.92

Abstract

Nature often serves as a model system for developing new adhesives. In aqueous environments, mussel-inspired adhesives are promising candidates. Understanding the mechanism of the extraordinarily strong adhesive bonds of the catechol group will likely aid in the development of adhesives. With this aim, we study the adhesion of catechol-based adhesives to metal oxides on the molecular level using atomic force microscopy (AFM). The comparison of single catechols (dopamine) with multiple catechols on hyperbranched polyglycerols (hPG) at various pH and dwell times allowed us to further increase our understanding. In particular, we were able to elucidate how to achieve strong bonds of different valency. It was concluded that hyperbranched polyglycerols with added catechol end groups are promising candidates for durable surface coatings.

Keywords: adhesion; atomic force microscopy; catechol; hyperbranched polyglycerols; valency

References

  1. Annu Rev Mater Res. 2011 Aug 1;41:99-132 - PubMed
  2. Biomacromolecules. 2013 Apr 8;14(4):1072-7 - PubMed
  3. Langmuir. 2008 Feb 19;24(4):1343-9 - PubMed
  4. Colloids Surf B Biointerfaces. 2014 Oct 1;122:684-92 - PubMed
  5. Environ Sci Technol. 2011 May 1;45(9):3959-66 - PubMed
  6. Nat Chem Biol. 2011 Jul 31;7(9):588-90 - PubMed
  7. Adv Mater. 2014 May;26(17):2688-93, 2615 - PubMed
  8. Mol Divers. 2005;9(4):305-16 - PubMed
  9. Science. 2010 May 14;328(5980):882-4 - PubMed
  10. Mar Biotechnol (NY). 2000 Jul;2(4):352-363 - PubMed
  11. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12999-3003 - PubMed
  12. J Biol Chem. 1995 Aug 25;270(34):20183-92 - PubMed
  13. Angew Chem Int Ed Engl. 2014 Oct 20;53(43):11650-5 - PubMed
  14. Science. 1999 Mar 12;283(5408):1727-30 - PubMed
  15. Biomacromolecules. 2014 Aug 11;15(8):3061-71 - PubMed
  16. Biochemistry. 2001 Mar 6;40(9):2887-93 - PubMed
  17. Rev Sci Instrum. 2009 Mar;80(3):035110 - PubMed
  18. J Am Chem Soc. 2014 Sep 10;136(36):12667-74 - PubMed
  19. J Biol Chem. 2006 Sep 8;281(36):26150-8 - PubMed
  20. Philos Trans A Math Phys Eng Sci. 2009 May 13;367(1894):1727-47 - PubMed
  21. J Am Chem Soc. 2014 Jan 15;136(2):688-97 - PubMed
  22. J Am Chem Soc. 2008 Mar 19;130(11):3664-8 - PubMed
  23. Langmuir. 2014 Apr 22;30(15):4358-66 - PubMed

Publication Types