Display options
Share it on

Evol Appl. 2015 Aug;8(7):662-78. doi: 10.1111/eva.12274. Epub 2015 Jun 13.

Morphological and genomic comparisons of Hawaiian and Japanese Black-footed Albatrosses (Phoebastria nigripes) using double digest RADseq: implications for conservation.

Evolutionary applications

Elisa G Dierickx, Allison J Shultz, Fumio Sato, Takashi Hiraoka, Scott V Edwards

Affiliations

  1. Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University Cambridge, MA, USA ; Department of Zoology, University of Cambridge Cambridge, UK.
  2. Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University Cambridge, MA, USA.
  3. Yamashina Institute for Ornithology Abiko, Japan.

PMID: 26240604 PMCID: PMC4516419 DOI: 10.1111/eva.12274

Abstract

Evaluating the genetic and demographic independence of populations of threatened species is important for determining appropriate conservation measures, but different technologies can yield different conclusions. Despite multiple studies, the taxonomic status and extent of gene flow between the main breeding populations of Black-footed Albatross (Phoebastria nigripes), a Near-Threatened philopatric seabird, are still controversial. Here, we employ double digest RADseq to quantify the extent of genomewide divergence and gene flow in this species. Our genomewide data set of 9760 loci containing 3455 single nucleotide polymorphisms yielded estimates of genetic diversity and gene flow that were generally robust across seven different filtering and sampling protocols and suggest a low level of genomic variation (θ per site = ∼0.00002-0.00028), with estimates of effective population size (N e = ∼500-15 881) falling far below current census size. Genetic differentiation was small but detectable between Japan and Hawaii (F ST ≈ 0.038-0.049), with no F ST outliers. Additionally, using museum specimens, we found that effect sizes of morphological differences by sex or population rarely exceeded 4%. These patterns suggest that the Hawaiian and Japanese populations exhibit small but significant differences and should be considered separate management units, although the evolutionary and adaptive consequences of this differentiation remain to be identified.

Keywords: Black-footed Albatross; Izu-Torishima; Midway Island; Phoebastria nigripes; conservation genomics; double digest RADseq; gene flow; integrative taxonomy; population differentiation; subspecies

References

  1. Evolution. 2014 Feb;68(2):501-13 - PubMed
  2. Trends Ecol Evol. 2000 Jul;15(7):290-295 - PubMed
  3. Mol Ecol. 2001 Nov;10(11):2647-60 - PubMed
  4. Bioinformatics. 2006 Feb 1;22(3):341-5 - PubMed
  5. Mol Ecol. 2008 May;17(9):2107-21 - PubMed
  6. Mol Biol Evol. 1998 Oct;15(10):1360-71 - PubMed
  7. Bioinformatics. 2007 Jul 15;23(14):1801-6 - PubMed
  8. Mol Biol Evol. 1999 Jul;16(7):1003-5 - PubMed
  9. Genetica. 2009 Apr;135(3):439-55 - PubMed
  10. Genetics. 2000 Jun;155(2):945-59 - PubMed
  11. Mol Ecol. 2008 Apr;17(7):1658-73 - PubMed
  12. Science. 2002 Dec 20;298(5602):2381-5 - PubMed
  13. Trends Ecol Evol. 2007 Jan;22(1):11-6 - PubMed
  14. Mol Ecol. 2014 Feb;23(4):788-801 - PubMed
  15. Mol Ecol. 2005 Mar;14(3):671-88 - PubMed
  16. Trends Ecol Evol. 1994 Oct;9(10):373-5 - PubMed
  17. PLoS One. 2008;3(10):e3376 - PubMed
  18. Trends Ecol Evol. 1996 Dec;11(12):514-7 - PubMed
  19. Mol Ecol. 2013 Jun;22(11):3179-90 - PubMed
  20. Nature. 2004 Dec 9;432(7018):695-716 - PubMed
  21. Nature. 2010 Apr 1;464(7289):757-62 - PubMed
  22. Science. 2008 Jun 27;320(5884):1763-8 - PubMed
  23. J Hered. 2009 Sep-Oct;100(5):556-64 - PubMed
  24. J Hered. 2007 Nov-Dec;98(7):692-704 - PubMed
  25. Proc Biol Sci. 1992 Aug 22;249(1325):163-71 - PubMed
  26. Mol Phylogenet Evol. 2013 Feb;66(2):526-38 - PubMed
  27. Science. 2010 May 7;328(5979):710-22 - PubMed
  28. Syst Biol. 2014 Mar;63(2):134-52 - PubMed
  29. Methods Mol Biol. 2011;772:157-78 - PubMed
  30. Mol Ecol. 2013 Jun;22(11):2841-7 - PubMed
  31. PLoS One. 2012;7(3):e31372 - PubMed
  32. Mol Ecol. 2004 Aug;13(8):2345-55 - PubMed
  33. Mol Ecol. 2014 Dec;23(23):5680-97 - PubMed
  34. Cytogenet Genome Res. 2007;117(1-4):120-30 - PubMed
  35. Genetics. 1931 Mar;16(2):97-159 - PubMed
  36. G3 (Bethesda). 2011 Aug;1(3):171-82 - PubMed
  37. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4563-8 - PubMed
  38. Evolution. 2005 Apr;59(4):720-9 - PubMed
  39. Genetics. 2013 Feb;193(2):515-28 - PubMed
  40. Bioinformatics. 2011 Nov 1;27(21):3070-1 - PubMed
  41. Mol Ecol. 2003 Nov;12(11):2953-62 - PubMed
  42. Evolution. 2014 Nov;68(11):3066-81 - PubMed
  43. Mol Ecol. 2009 Jul;18(14):2930-3; discussion 2934-6 - PubMed
  44. Mol Ecol. 2013 Jun;22(11):2864-83 - PubMed
  45. Mol Ecol. 2013 Jun;22(11):3124-40 - PubMed
  46. Mol Biol Evol. 2006 Mar;23(3):691-700 - PubMed
  47. Evol Appl. 2014 Feb;7(2):212-26 - PubMed
  48. Evolution. 2005 Aug;59(8):1633-8 - PubMed
  49. Mol Phylogenet Evol. 2015 Feb;83:305-16 - PubMed
  50. Mol Ecol. 2008 Sep;17(17):3808-17 - PubMed
  51. PLoS One. 2007 Jan 17;2(1):e160 - PubMed
  52. Mol Ecol. 2003 Oct;12(10):2747-58 - PubMed
  53. Mol Ecol. 2007 May;16(9):1765-85 - PubMed
  54. Genetics. 2008 Oct;180(2):977-93 - PubMed
  55. PeerJ. 2015 Apr 21;3:e895 - PubMed
  56. Mol Ecol. 2013 Jun;22(11):3002-13 - PubMed
  57. Mol Ecol. 2013 Jun;22(11):3141-50 - PubMed
  58. Bioinformatics. 2010 Nov 15;26(22):2867-73 - PubMed
  59. Science. 2008 Feb 22;319(5866):1100-4 - PubMed
  60. Proc Biol Sci. 2007 Mar 22;274(1611):779-87 - PubMed
  61. Curr Biol. 2014 Mar 17;24(6):671-6 - PubMed
  62. Mol Ecol. 2012 Aug;21(16):3907-30 - PubMed
  63. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  64. PLoS One. 2012;7(5):e37135 - PubMed

Publication Types